您好,欢迎来到智榕旅游。
搜索
您的当前位置:首页基于小波相关特征尺度熵的HSMM设备退化状态识别与故障预测方法

基于小波相关特征尺度熵的HSMM设备退化状态识别与故障预测方法

来源:智榕旅游
第29卷第12期 仪 器 仪 表 学 报 V01.29 No.12 2008年12月 Chinese Journal of Scientiifc Instrument Dee.2008 基于小波相关特征尺度熵的HSMM设备 退化状态识别与故障预测方法 木 曾庆虎,邱静,刘冠军 (国防科学技术大学机电工程研究所长沙410073) 摘要:隐半马尔可夫模型(HSMM)是隐马尔可夫模型(HMM)的一种扩展模型,是在已定义的HMM结构上加入了时间组成 部分,克服了冈马尔可夫链的假设造成HMM建模所具有的局限性,与HMM相比具有更好的建模能力和分析能力,而且可以直 接用于预测。基于振动信号与语音信号的相似性,将HSMM引入机械设备退化状态识别与故障预测中,提出基于小波相关特 征尺度熵(W。 )的HSMM设备退化状态识别与故障预测方法。首先将小波相关滤波法与信息熵理论相结合得到能敏感表征 故障严重程度的 : 向量,并以此向量作为HSMM的输入进行训练,建立基于HSMM的设备运行状态分类器与故障预测模 型,从而实现设备退化状态识别与故障预测。将其应用到滚动轴承的退化状态识别与故障预测中,验证了该方法的有效性。 关键词:故障预测;状态识别;小波相关特征尺度熵;隐半马尔可夫模型(HSMM);退化状态 中图分类号:THI33 TP391 文献标识码:A 国家标准学科分类代码:460.2020 520.60 Equipment degradation state recognition and fault prognosis method based on wavelet correlation feature scale entropy and HSMM Zeng Qinghu,Qiu Jing,Liu Guanjun (Institute ofMechatronics Engineering,NUDT,Changsha 410073,China) Abstract:Hidden semi—markov model(HSMM)is an expansion model of hidden markov model(HMM)and con. structed by adding a temporal component into the well—defined HMM structure,which overcomes the modeling limita・ tion of HMM due to the Markov chain assumption.Therefore,it improves the power in modeling and analysis,and further more,it can be directly used for prognosis.Based on the similarity between vibration and sound signals, HSMM is introduced to degradation state recognition and fault prognosis of machinery equipment,and a method of degradation state recognition and fault prognosis is proposed based on wavelet correlation feature scale entropy (Wc )and HSMM.Firstly,wavelet transform correlation filter and information entropy theory are combined to ob— tain the WcFsE vector,which can sensitively express the fault severity degree.Secondly,the WcFsE vector is inputted to the HSMM for training,and the running state classifier and fault prognosis model of the equipment are constructed based on HSMM to recognize equipment degradation states and prognosticate faults.The proposed method was ap— plied to the degradation state recognition and fault prognosis of a roller bearing,and experiment results demonstrate that the method iS effective. Key words:fault prognosis;state recognition;wavelet correlation feature scale entropy;hidden semi—markov model (HSMM);degradation state 收稿13期:2007-09 Received Date:2007-09 基金项目:国家“十一・五”部委预研项目(51317050301)资助 2560 仪器仪表学报 第2 9卷 得到各个尺度下的高信噪比小波系数:D ={d (k),k: 1 引 言 1,…,Ⅳ, =1,2,…,m}和尺度系数C ,为了统一,将C 表示为D + ,在此可以把D,( =1,2,…,m,m+1)看成 状态维修是工程实践中提出的一个主要问题,故障 预测(prognostics)是实现状态维修的核心支撑技术。从 广泛意义上来说故障预测具有检测和隔离早期故障、确 定设备当前故障的严重程度以及预测故障发生时间(预 测部件的剩余使用寿命)的能力,包括3个步骤:1)早期 对信号 (n)的一种划分,定义这种划分的测度: =d )(k)/∑d州 )(J}) (1) 式中:d (k)为d (k)的傅里叶变换。 根据信息熵的基本理论,定义小波相关特征尺度 熵 Wc (wavelet correlation feature scale entropy): 故障检测和预测特征信息提取;2)退化状态识别(估计 当前故障严重程度);3)预测故障发生时间(或部件剩余 使用寿命预测) 。 。。 预测特征信息提取是设备退化状态识别与故障预测 的瓶颈问题,它直接关系到退化状态识别的准确性和故 障预测的可靠性。在退化状态识别与故障预测中,所提 取预测特征信息能综合反映设备的运行状态(即设备从 正常运行到 现小故障,再到真正的故障状态甚至更严 重的灾变故障,这一特征量均能反映),且对 现的异常 有较高的敏感性。文献[3]中将小波相关滤波法与信息 熵理论相结合所定义的沿尺度分布的小波相关特征尺度 熵(W )能够满足上述要求。 在预测特征信息提取的基础上,确定设备当前所处 的健康状态(即退化状态识别)是进行故障预测的前提 条件之一。隐马尔可夫模型(HMM)具有严谨的数据结 构和可靠的计算性能,现已成为语音识别的主流技术 。 退化状态识别和语音识别本质上都是模式识别、分类的 问题,因此,国内外一些研究者开始把HMM方法引入到 退化状态识别领域中来,取得了良好的效果 ~ 。但 HMM由于马尔可夫链的假设使其对复杂系统的建模具 有一定的局限性,分类精度不高 。隐半马尔可夫模型 (HSMM)是HMM的一种扩展模型,在已定义的HMM的 结构上加入了时间组成部分,克服了因马尔可夫链的假 设造成HMM建模所具有的局限性,与HMM相比具有更 好的建模能力和分析能力,提高了模式的分类精度,而且 可以直接用于预测 “ 。 根据上述讨论,本文将小波相关滤波法与信息熵理论 相结合,得到沿尺度分布的V ,选取最能反映故障特 的 作为预测特征信息,进而形成能反映设备故障严 重程度的预测特征信息向量,在此基础上建立基于HSMM 的状态分类器与故障预测模型,并将其应用到滚动轴承的 退化状态识别与故障预测中,验证了该方法的有效性。 2基于小波相关特征尺度熵预测特征信息 提取 2.1小波相关特征尺度熵 实测信号 (/'t)经过小波相关滤波 降噪处理后, w =一∑ log (2) 式中: =1,2,…,m,m+1;W 为振动信号 (n)的第 尺度的小波相关特征尺度熵。 2.2滚动轴承振动信号小波相关特征尺度熵预测信息 提取 由式(2)所定义的小波相关特征尺度熵w 体现 的是尺度J.上信号能量分布的均匀程度,描述了尺度 上 信号的复杂程度,从而量化故障特征。凶此采用以下方 法提取滚动轴承振动信号的故障特征: 1)将信号进行离散小波变换,得到各个尺度的小波 系数: 2)对得到的小波系数进行小波相关滤波处理(为避 免在进行小波相关滤波时发生特征信号畸变情况,应该 选择合适的小波分解层次,根据实验得到,本文选择db4 小波进行5层分解最佳) ,求得信噪比较高的尺度域小 波系数; 3)由式(1)、(2)分别求得各个尺度的小波相关特征 尺度熵,进而以各个尺度的小波相关特征尺度熵为元素 可以构造一个特征向量,表示为 ,则T=[w 。, …,, ](因为第5层的低频重构信号可以认 为是低频的渐变信号,其小波相关特征尺度熵很小,将 w 。 忽略。)。当小波相关特征尺度熵较大时,给分析 使用会带来诸多不便,为此可以对特征向量作归一化处 理。令: w=(∑1 w , (3) 矢量 即为归一化小波特征尺度熵矢量: [ , WCFSE2WCFSE5] (4) …W’ ,’ , ’ 4)由于滚动轴承振动信号的主要信息在高频段,因 此选取最能反应故障特征的高频段尺度1和尺度2的小 波相关特征尺度熵w 眦 、w 形成小波相关特征尺度 熵预测特征信息向量: T=[wc l,wcFsE2] (5) 根据以上W 眦预测特征信息提取方法,对滚动轴承 正常和几种故障程度不同的内环运行状态进行分析” , 第12期 曾庆虎等:基于小波相关特征尺度熵的HSMM设备退化状态识别与故障预测方法 2561 提取其w 预测特征信息向量(此时数据较小,没有进 行归一化处理)如表l所示。限于篇幅,每种状态只列出 的用显式P,(d)表示状态驻留概率分布的HMM。隐半 马尔可夫模型(HSMM)是考虑状态驻留概率分布为显式 了其中2组实验数据的特征矢量值。 表1 滚动轴承振动信号小波相关特征尺度熵 Table 1 The WcFsE of the roller bearing vibration signal 从表1的实验数据可以看flI:当滚动体出现故障时, 小波相关特征尺度熵w 眦.、w 增大,而且故障越严 重w 、w FsE:就越大。这是冈为滚动轴承存在局部故 障时,局部损伤的滚动轴承元件存运转过程中产生的高 频振动破坏了振动信号分布原有的均匀性,w FsE随之发 生相应的改变。因此,可以把T=[w FsE。,w ]作为 HSMM模型的输入向量,进行滚动轴承退化状态的识别 和故障预测。 3 基于HSMM设备退化状态识别与故障 预测 3.1 HSMM的基本概念及其算法 隐马尔可夫模型(hidden Markov model,HMM)是一 个双蕈随机过程,不仅状态到状态之间的转移是随机的, 而且每个状态的观测符号也是随机的。模型中真实的状 态是“隐藏的”,不能直接观测,只能通过观测矢量感知 它的存在,因此这样的模型称为HMM 。 HMM具体可表示为: A=(万,A, ) (6) 式中:仃为初始概率分布矢量,A为状态转移概率矩阵, 为观察值概率矩阵。 在常规HMM中,模型在某状态停留一定时间的概 率为: P (d)=nd 一 (1一n ) (7) 由式(7)可知,该概率随着时间的增长呈指数下降 的趋势,这显然是不合理的,在大多数实际应用中都不服 从这一分布函数。这是常规HMM的重要缺点。 为了克服常规HMM的上述缺点,提出了各种各样 的一种HMM,是在已定义的隐马尔可夫模型的结构上加 入了时间组成部分,克服了因马尔可夫链的假设造成 HMM建模所具有的局限性,在解决现实问题中,HSMM 提供更好的建模能力和分析能力。与常规HMM中一个 状态只对应一个观测值不同,HSMM中一个状态对应一 节(segment)观测值,本文研究中,用一节半马尔可夫模 型表示的状态定义为宏观状态(macro—states),每个宏观 状态是由几个单一状态组成,这些单一状态定义为微观 状态(micro—states)… ,假设有£节宏观状态序列,定义 g,为第f节(1≤f≤ )末端点的时间索引,节的描述如表 2所示。设t时刻的隐藏状态为s ,O是该状态所对应的 观测值序列,对于第f个宏观状态,这观测值是o …, o 而且它们有相同的微观状态标志:s +。=s 1+2=…= s =h ,其拓扑结构图如图1所示。 表2 HSMM节描述 Table 2 The segment description of HSMM 时间 观测值 微观状态 驻留时间宏观状态节 1,…,ql 01,’一,。q1 l,… g1 dl=ql hi 1 ql+1,…,q2 o9l+1,…,o 2 ql+I,…,sg2 d2=q2一ql h2 2 q£一l+1, ・ ,q£0gLl+1, ,。q£ q l 1,‘’‘,SqL dL=qL—qt.一1 ^ L 宏观状态 t(‘) :(.) ,I (.) dl q单位时间 g ’g,单位时 dL=qCg 单位时问 SI=S2一一s=h s q ・_=sq。=’ s qllq=_h2 q } s q f s q h L 图1 隐半马尔可夫结构图 Fig.1 The structure figure of HSMM HSMM的特性是由以下参数来描述的:初始状态概 率分布矢量(7r)、状态转移概率矩阵(A)、状态驻留分布 (D)、观察值概率矩阵(曰),因此可以记HSMM为A= (7r,A,D,丑)。其中初始分布 与常规HMM相同,状态 转移概率矩阵A,与常规HMM基本相同,在HSMM中, 虽然宏观状态之间的状态转移s 一s。,是马尔可夫过程, P(s = l S =i)=a 而微观状态之间的转移 一 s 并不是马尔可夫过程,这也即为什么称为半马尔可夫 模型的原因” 。各状态的观察概率密度函数(对离散 HMM来说是概率分布函数)B与常规HMM相同, 为 每个宏观状态的状态驻留最大时间,用概率值P (d) 2562 仪器仪表学报 第2 9卷 (i=l,2,…, )描述状态驻留时间。 HSMM的基本算法有前向一后向算法、Viterbi算法与 Baum—Welch算法。前向一后向算法用来计算给定一个观 测值序列O=(O,,O:,…,O )以及一个模型A时,求由 模型产生观测值O的概率;Viterbi算法解决给定一个观 测值序列O=(O。,O ,…,O )和一个模型A,在最佳的 意义上确定状态序列H,而Baum—Welch算法则是解决模 型的训练问题,即HSMM参数估计问题。HSMM与常规 HMM相比,虽然增强了模型描述能力,但也带来新的缺 点,那就是计算复杂度和存储要求都较大幅度增加。用 参数方法代替非参数方法可以在一定程度上减少其存储 要求,本文研究中采用参数法,状态驻留概率分布函数采 用单高斯分布函数,而且为了减少计算复杂度,定义了新 的前后变量和采用新的前后算法来估计模型的参数,其 详细算法见文献『11]。 3.2基于HSMM设备退化状态识别与故障预测模型 基于HSMM退化状态识别与故障预测的模型如图2 所示,主要有预测特征信息提取、退化状态识别、故障预 测几个步骤。 :预测特征 !信息提取 参数估计 I练每个健 参数估计(用全寿命数 康状态的HSMM模型1 据训练一个具有所有 健康状态的HSMM模型) 当 刖 HSMM1(A1) 采 比较 HSMMa(Ad) 集 Pfo/a) 的 确定 —r 观 当前 计算每个退化 察 状态驻留时间 值 退化 序 状态 列 确定出部件当 分类阶段 前状态的剩余 (退化状态识别) 使用寿命 预测阶段 f故障预测1 j 一....一.一一一.一一一一一一.一..一.一.一...一一一一一.一....一.一一一一一一一.图2基于HSMM状态识别与故障预测系统框架图 Fig.2 The system block diagram of the state recognition and fault prognosis based on HSMM 3.2.1基于 预测特征信息的提取 依据上述w 预测特征信息提取方法,选取最能反 映故障特征的 : 作为预测特征信息向量,其大小反映 了设备运行状态的差别,将所选取的w 预测特征信息 向量作为设备运行状态的特征矢量输入HSMM状态分 类器与故障预测模型,实现设备的退化状态识别与故障 预测 3.2.2基于HSMM退化状态识别 利用w 预测特征信息提取方法得到各个退化状 态振动信号的w : 预测特征信息向量,将此向量作为 HSMM的输入,利用修改前后算法进行训练,估计模型参 数,建立基于HSMM的机械设备运行状态分类器;利用 已经训练好的模型,将欲处理的信号经w 预测特征信 息提取后形成观测向量进行状态识别,即将观测向量送 一 人状态分类器,计算观测向量在不同模型下的概率,其中 输出概率最大的状态模型即为设备当前所处的退化状 态,从而实现设备退化状态的识别。 3.2.3基于HSMM故障预测 故障预测就是在确定当前设备健康状态的基础上预 测部件发生故障的时间或估计部件的剩余使用寿命,图 3描述了基于宏观状态驻留的HSMM预测模型。每个宏 观状态驻留概率分布函数P(d )采用单高斯分布函 £一】 数,在约束条件为 =∑D(h )情况下最大化 L l log JP(s l A, )=∑log P(dn/h ),得到状态驻留 时间 : D(h )= (hf) ptr (hf) (8) £I L I p=(T一∑ (^ )/ O-2( ) (9) 部件使用寿命=,J(h0)+D(h】)+D(h2)+…+D(h£一1) D(h ):部件在健康状态h 的驻留时间 h0:健康状态O(正常状态);hI:健康状态1(退化状态1); …;^ l:健康状态L一1;ct“:状态转移概率 图3基于HSMM故障预测模型 Fig.3 The fault prognosis model based on HSMM 基于宏观状态驻留的HSMM预测过程如下: 1)提取全寿命振动数据的w 预测特征信息,训练 HSMM(参数估计)全寿命模型,得到全寿命HSMM模型 的状态转移概率。 2)通过参数估计,得到每个宏观状态的驻留概率分 布函数P(d /h ),由此得到状态驻留时间均值和方差。 3)由退化状态识别确定部件当前所处的健康状态。 4)由以下后向递归方程得到部件剩余使用寿命(假 设部件当前健康状态为退化状态f,RUL 表示部件处于 健康状态Z的剩余使用寿命): 部件当前健康状态为 一2时: RULL2 = rz£2 一2[D(hL一2) +D(hL一1)] + Ⅱ : 。[D(h 一。)] 第12期 曾庆虎等:基于小波相关特征尺度熵的HSMM设备退化状态识别与故障预测方法 2563 部件当前健康状态为 一3时: RUL¨=a¨¨[D(h¨)+RULH]+ aL 3£一2[RULL一2] 部件当前健康状态为l时: RUL =a¨[D(hf)+RUL ]+a¨+ [RUL ] (10) 4实例分析 为了验证该方法在设备状态识别与故障预测中的有 效性与实用性,本研究中应用Georgia Institute of Technol— ogy滚动轴承实验台上的10组滚动轴承全寿命数据(相 同的实验工况下)进行了实验分析 ” ,为论述方便,将其 编为1~10号。每组全寿命数据分为4个健康状态(正 常状态0、退化状态1、退化状态2、故障状态)。 4.1 退化状态识别 为正确识别设备当前的退化状态(限于篇幅,只对1 号轴承实验数据进行了验证),在实验中,每种状态各获 取30个数据样本,依据上述小波相关特征尺度熵预测特 征信息提取方法,用各种状态的前10组数据的小波相关 特征尺度熵向量T=[w 。,w :]来训练模型,其输 出结果为各个状态的HSMM模型即滚动体的运行状态, 后20组数据用于测试模型。在HSMM中,状态输出概率 密度函数和状态驻留概率分布函数分别为混合高斯概率 密度函数和单高斯概率密度函数,宏观状态数为4,其拓 扑结构见图1。设定训练过程中最大迭代步数为100,算 法的收敛误差为0.000 001。各个模型的迭代步数和每 次迭代的对数似然估计概率值见图4,图中纵坐标表示4 种状态的对数似然估计概率值。从图4可以看出,这4 个模型迭代曲线均可以达到训练时设定的误差标准,其 训练步数均不超过3O步,因此这种训练方法具有训练速 度快、训练精度高等优点。可见这种模型具有较强的处 理实时信号的能力。使用该模型用不同状态的余下的 20组数据进行测试,其状态识别测试结果见表3。由表3 可知,所做的有限次实验中,分类效果较理想,其状态识 别成功率达到92.5%。 褂 鼙 《 荟 莨 图4基于小波相关特征尺度熵的HSMM训练曲线 Fig.4 The training curve of c —HSMM model 表3小波相关特征尺度熵-HSMM测试后的结果 Table 3 The test results of WCFsE-HSMM model 4.2故障预测 利用小波相关特征尺度熵预测特征信息提取方法对 I~4号滚动轴承的全寿命数据进行分析,得到全寿命数 据的预测特征信息向量,然后利用所提取的全寿命数据 预测特征信息向量对HSMM进行训练,得到一个4态的 HSMM预测模型。在训练过程中,得到退化状态之间的 转移概率和每个退化状态驻留时间的均值及方差(时间 单位:h),如表4和表5所示。 表4退化状态转移概率 Table 4 The transition probabiliites among degradation states 表5退化状态驻留时间均值和方差 Table 5 The means and variances of degradation states 根据状态识别结果确定设备当前所处的退化状态以 及训练过程中所获取的每个退化状态驻留时间均值和方 差信息,由式(10)可得所处退化状态轴承剩余寿命的均 值和方差。假设轴承处于退化状态1,则可得Mean— RULl=13.569 7 h,Variance—RUL1=1.162 3 h。现利用 5~10号实验数据对上述剩余寿命预测方法进行验证 (限于篇幅,只验证了处于退化状态1的情况),发现5、 7、8、10号轴承实际测得退化状态1时剩余寿命时间处 于区间I Mean—RULl—Variance—RULl,Mean—RUL】+ Variance—RUL ]内,6号和9号轴承的退化状态1的实际 剩余寿命在上述区间外,预测精度为66.7%,预测结果 较为理想。 2564 仪器仪表学报 第2 9卷 [8] CHINNAM R B,BARUAH P.Autonomous diagnostics 5 结 论 and prognostics through competitive learning driven HMM—based clustering f C].Proc.of the Internal Joint 提出一种基于小波相关特征尺度熵的HSMM设备 退化状态识别与故障预测新方法。该法通过对监测到的 Conf on Neural Networks,July 2003,2466—247 1. [9] CAMCI F,CHINNAM R B.Dynamic Bayesian networks for machine diagnostics:hierarchical hidden Markov mod— 设备振动信号进行小波相关滤波处理,结合信息熵理论 得到沿尺度分布的小波相关特征尺度熵,选取最能反映 els VS.competitive learning[C].Proc of the Internal Joint Conf.on Neural Networks,Montreal,Canada,July 故障特征的小波相关特征尺度熵作为预测特征信息参 数,进而形成能反映设备故障严重程度的预测特征信息 向量,并以此向量作为HSMM的输入进行训练,建立基 于HSMM的机械设备运行状态分类器与故障预测模型, 并将其应用到滚动轴承的退化状态识别与故障预测中, 验证了该方法的有效性。 参考文献 QIU H,LEE J,LIN J,et a1.Robust perfornlance degra— dation assessment methods for enhanced rolling element bearing prognostics[J].Advanced Engineeirng Informat— ics,2003,17:127—140. [2] ZHANG X D,XU R,KWAN C,et a1.An integrated ap— proach to bearing fault diagnostics and prognostics[C]. 2005 American Control Conference,2005:2750—2755. [3] 曾庆虎,邱静,刘冠军,等.小波相关特征尺度熵在滚 动轴承故障诊断巾的应用[J].国防科技大学学报, 2007,29(6):102—105. ZENG Q H,QIU J,LIU G J,et a1.Application research of wavelet correlation feature scale entropy to fauh diagno— sis of roller beatings『J].Journal of National University of Defense Technology,2007,29(6):102—105. [4] RABINER L R.A tutorial on hidden Markov models and selected applications in speech recognition[J].Proceed— ings of the IEEE,1989,77(2):257—286. [7] KWAN C,ZHANG X,XU R,et a1.A novel approach to fault diagnosis and prognostics[C].Proceedings ICRA 03.IEEE International Conference on Robotics and Auto— mation.1(3),September 2003:604-609. 31一August 4,2005:1752一l757. [10]DONG M,HE D.Hidden semi—Markov models for nla— chinery health diagnosis and prognosis[J].Trans.NAM— RI/SMEXXXII,2004,32:199—206. 『1 1]DONG M,HE D.A segmental hidden semi—Markov mod— el(HSMM)一based diagnostics and prognostics framework and methodology[J].Mechanical System and Signal Pro— cessing,2007,21:2248—2266. [12]PAN Q,ZHANG L,DAI G ZH,et a1.Two de—noising methods by wavelet transform[J].IEEE Frans.on Signal Processing,1999,47(2):3401—3406. [13]Q1U J,ZHANG CH,SETH B B,et a1.Damage mechan— ics approach for bearing li ̄time prognostics[J].Me— chanical Systems and Signal Processing,2002,16(5): 817—829. 作者简介 曾庆虎,讲师,国防科技大学机电r_[程研究所博士研究 生,主要研究方向为机器状念监控、故障诊断和故障预测。 E—mail:zengqinghu@nudt.edu.cn Zeng Qinghu is a doctoral candidate in College of Mechatron— ics Engineeirng and Automation,National University of Defense Technology,his cmTent research interests include fault diagnosis and prognosis. E—mail:zengqinghu@nudt.edu.cn 邱静,国防科技大学科研部教授、博士生导师,主要从事 状态监控与故障诊断研究。 Qiu Jing is a professor in College of Mechatronics Engineering and Automation,National University of Defense Technology,his current research interests include fault diagnosis and prognosis. 

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- zrrp.cn 版权所有 赣ICP备2024042808号-1

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务