搜索
您的当前位置:首页华南理工大学 线性代数与解析几何 习题 (10)

华南理工大学 线性代数与解析几何 习题 (10)

来源:智榕旅游


第三章 矩阵的初等变换与线性方程组

1.把下列矩阵化为行最简形矩阵:

10210231(1) 2031; (2) 0343;

3043047111343231373354112024(3) ; (4) . 22320328303342123743

1021r2(2)r11021~0013 解 (1) 20313043r3(3)r10020r2(1)1021r3r21021~0013~0013 r3(2)00100003r331021r23r31021~0013~0010

00010001r1(2)r21000~0010 r1r30001

0231r22(3)r102313 ~(2) 0343 0010471r3(2)r1001302010r120105r3r2~0013~0013 r13r200000000 1

13(3) 231343231r2(4)0~r3(3)00r(5)4331134r23r154180048 ~ 32000366r2r31421r3r005101041134311023r13r2012200122 ~0122r3r20000000122rr000042

2312(4) 32230r22r11~r38r100r47r11r2r30~0013701r12r202412 ~830r33r208743r42r207111110r1r2020201~0014r2(1)000014rr004311024 891278112111 014000201021100000203 1400

2.在秩是r的矩阵中,有没有等于0的r1阶子式?有没有等于0的r阶 子式?

解 在秩是r的矩阵中,可能存在等于0的r1阶子式,也可能存在等 于0的r阶子式.

10000100例如,0010

00000000R()3同时存在等于0的3阶子式和2阶子式.

2

3.从矩阵A中划去一行得到矩阵B,问A,B的秩的关系怎样? 解 R(A)R(B)

设R(B)r,且B的某个r阶子式Dr0.矩阵B是由矩阵A划去一行得

到的,所以在A中能找到与Dr相同的r阶子式Dr,由于DrDr0, 故而R(A)R(B).

4.求作一个秩是4的方阵,它的两个行向量是(1,0,1,0,0),(1,1,0,0,0) 解 设1,2,3,4,5为五维向量,且1(1,0,1,0,0),

122(1,1,0,0,0),则所求方阵可为A3,秩为4,不妨设

453(0,0,0,x4,0)4(0,0,0,0,x5)取x4x51 (0,0,0,0,0)51010011000故满足条件的一个方阵为00010

0000100000

5.求下列矩阵的秩,并求一个最高阶非零子式:

02313213113; (1) 1121; (2) 2131344705182183723075(3) . 3258010320

3

02112131r1r202 解 (1) 1121~3113441344112111213r3r2r2r1~0465~0465秩为2 r3r100046500二阶子式

31114.

r1r213441r22r15 ~07119r37r10213327153213213(2) 2137051813441r33r2071195秩为2.

~00000二阶子式

32217.

701r12r47503~80r22r40220r3r1034r1r21710rr4101601~014r3140020r41600r4r3218230(3) 32510332643132275 000r23r10~r32r101120000030217秩为3 00100032075585805700. 三阶子式

32320

6.求解下列齐次线性方程组:

4

x1x22x3x40,(1) 2x1x2x3x40, (2)

2x2xx2x0;2341x12x2x3x40,3x16x2x33x40, 5x10xx5x0;23412x13x2x35x40,3x14x25x37x40,3xx2x7x0,12x13x23x32x40,234(3)  (4)

4x1x23x36x40,4x111x213x316x40,x12x24x37x40;7x12x2x33x40.解 (1) 对系数矩阵实施行变换:

4xx41311211010x23x4 2111~0131即得22120014x4x3343xx444x13x2故方程组的解为k3

x343x14

(2) 对系数矩阵实施行变换:

x12x2x412111201xx223613~0010即得 510150000x30 x4x4x121x210故方程组的解为k1k2 x00301x4

(3) 对系数矩阵实施行变换:

5

x12315100031270100x24136~0010即得x312470001x4x10x20故方程组的解为

x30x40

(4) 对系数矩阵实施行变换:

313571034171719203223014111316~171700007213 0000313x117x317x4x19x20x即得234

1717x3x3xx440000

313x117171920x2故方程组的解为k1k2

1717x310x401

7.求解下列非齐次线性方程组:

2x3yz4,4x12x2x32,x2y4z5,(1) 3x11x22x310, (2) 

11x3x8;3x8y2z13,124xy9z6; 6

2xyzw1,2xyzw1,(3) 4x2y2zw2, (4) 3x2yz3w4,

2xyzw1;x4y3z5w2;

解 (1) 对系数的增广矩阵施行行变换,有

2121338431210~0101134

113080006R(A)2而R(B)3,故方程组无解.

(2) 对系数的增广矩阵施行行变换:

1410212312450112 38213~000041960000x2z1x21即得yz2亦即yk12

z10zz

(3) 对系数的增广矩阵施行行变换:

211112111142212~00010 2111100000111111xxyz222222y即得yy 即k11k200

z010zzw000w0

(4) 对系数的增广矩阵施行行变换:

114352211159532134~017771435200000

7

11610777595~01 77700000116116xzwx777777595y5z9w5y即得 即k1 k2777777z100wzzww010

8.取何值时,非齐次线性方程组 x1x2x31,x1x2x3, 2xxx231(1)有唯一解;(2)无解;(3)有无穷多个解?

11解 (1) 110,即1,2时方程组有唯一解.

11

(2) R(A)R(B) 1112~011(1)

22100(1)(2)(1)(1)由(1)(2)0,(1)(1)20 得2时,方程组无解.

(3) R(A)R(B)3,由(1)(2)(1)(1)20, 得1时,方程组有无穷多个解.

9.非齐次线性方程组 B11111 8

2x1x2x32,x12x2x3, 2xx2x231当取何值时有解?并求出它的解.

12121212解 B121~011(1)

321120(1)(2)00方程组有解,须(1)(2)0得1,2

x111当1时,方程组解为x2k10

10x3x112当2时,方程组解为x2k12

10x3

(2)x12x22x31,10.设2x1(5)x24x32,

2x4x(5)x1,123问为何值时,此方程组有唯一解、无解或有无穷多解?并在有无穷多解

时求解.

2212542 解 22451521初等行变换1211~01 (1)(10)(1)(4)0022(1)2(10)当A0,即0 1且10时,有唯一解.

2(1)(10)(1)(4)当0且0,即10时,无解.

22

9

(1)(10)(1)(4)0且0,即1时,有无穷多解.

221221此时,增广矩阵为0000

0000当

x1221原方程组的解为x2k11k200 (k1,k2R)

010x3

11.试利用矩阵的初等变换,求下列方阵的逆矩阵:

32013212102(1) 315; (2) . 12323230121321100321100解 (1)315010~014110

32300100210117902203002221012~010112

00110102101227230063210112

1101022237326故逆矩阵为112

110223~001~00321 10

30(2) 1010~0010~0010~0010~0010~00110002210100 2320010121000123200101210001 4951030221010023200101210001 0111034021010223200101210001 011103400121610200112210001`01 01011360012161000011241000101 01011360012161012411010故逆矩阵为 113621610

4121312.(1) 设A221,B22,求X使AXB;

31131

11

20210123(2) 设A213,B231,求X使XAB.

334解

241213初等行变换10010(1) AB22122~010153

311310011242101XAB153

12421012130初等列变换3340A(2) ~B123223142111. XBA47400101701 14 12

因篇幅问题不能全部显示,请点此查看更多更全内容

Top