您好,欢迎来到智榕旅游。
搜索
您的当前位置:首页Integrative negotiation in complex organizational agent systems

Integrative negotiation in complex organizational agent systems

来源:智榕旅游
StudentPaper:HowCooperativeShouldIBe?

IntegrativeNegotiationInComplexOrganizationalAgentSystems

TrackingNumber:163

ComputerScienceDepartment

UniversityofMassachusettsat

Amherst

XiaoqinZhang

ComputerScienceDepartment

UniversityofMassachusettsat

Amherst

VictorLesser

AutomatedReasoningGroupHoneywellLaboratories

TomWagner

wagner

shelley@cs.umass.edulesser@cs.umass.edu

negotiatetomaximizetheirownlocalutility;incooperativenegoti-ation,agentsworktofindasolutionthatincreasestheirjointutility–thesumoftheutilitiesofallinvolvedagents.Inthecompeti-tivenegotiationclass,significantwork[8,9]hasbeendoneintheareaofboundedrationalself-interestedagents(BRSI).Saidagentsareself-interestedandsocialwelfareisnotaconcern–eachagentworkstomaximizeitsownutilitythoughcontracting,biddinganddecommiting.Inthecooperativenegotiationclass,significantworkhasbeendoneintheareaofconflictresolutionthroughnegotiation[2,5,11].Inthiswork,thereisnonotionofindividualagentutility–agentsare“completely-cooperative”witheachotherandcooper-atetosolveproblemstogether.

Wefeelthatasthesophisticationofmulti-agentsystemsincreases,MASwillbeneithersimplemarketsystemswhereeachagentispurelyself-interested,seekingmaximizeitslocalutility,nordis-tributedproblemsolvingsystemswhereallagentsarecompletely-cooperativeworkingtomaximizetheachievementofasetofglobalgoals.Thiswilloccurfortworeasons.Onereasonisthatagentsfromdifferentandseparateorganizationalentitieswillcometo-gethertodynamicallyformvirtualorganization/teamforsolvingspecificproblemsthatarerelevanttoeachoftheirorganizationalentities[7].Howtheseagentsworkintheirteamwilloftendepen-dentontheexistenceofbothlongtermandshort-termrelationshipsandontheconfrontationalattitudeoftheirunderlyingorganiza-tionalentities.Wealsofeelthatevenforagentsfromself-interestedorganizations,itmightbebeneficialforthemtobepartiallyco-operativewhentheyareinthesituationswheretheywillhavere-peatedtransactionswithotheragentfromotherorganizationalenti-ties.Additionally,agentsmaybeinvolvedconcurrentlywithmorethanonevirtualorganizationswhiledoingtasksfortheirownorga-nizationalentity.Secondly,wefeelthatevenagentsworkingsolelywithagentsoftheirownorganizationalentity,itstillmaybead-vantageousforthemtotakevaryingattitudesinthespectrumoffullycooperativetototallyself-interestedinorderfortheorganiza-tiontobestachieveitsoverallgoals.Thisperspectiveisbasedonabounded-rationalargument:itisnotpossiblefromacomputationalnorcommunicationperspectiveforanagenttobefullycooperative,sinceagentsneedtotakeintoaccounttheutilitiesofallagentsintheorganizationandthestateofachievementofallorganizationalgoalstobefullycooperative.Thus,itisourfeelingthatitmaybebestfortheorganizationtohaveagentsbeingpartiallycooperativeinitslocalnegotiationwithotheragentsratherthanbeingfullyco-operativeinordertomoreeffectivelydealwithuncertaintyofnothavingacompletelyinformedandup-to-dateviewofthestateof

ThismaterialisbaseduponworksupportedbytheNationalSci-enceFoundationunderGrantNo.IIS-9812755andtheAirForceResearchLaboratory/IFTDandtheDefenseAdvancedResearchProjectsAgencyunderContractF30602-99-2-0525.TheU.S.GovernmentisauthorizedtoreproduceanddistributereprintsforGovernmentalpurposesnotwithstandinganycopyrightannotationthereon.Disclaimer:Theviewsandconclusionscontainedhereinarethoseoftheauthorsandshouldnotbeinterpretedasnecessarilyrepresentingtheofficialpoliciesorendorsements,eitherexpressedorimplied,oftheDefenseAdvancedResearchProjectsAgency,AirForceResearchLaboratory/IFTD,NationalScienceFounda-tion,ortheU.S.Government.

Permissiontomakedigitalorhardcopiesofallorpartofthisworkforpersonalorclassroomuseisgrantedwithoutfeeprovidedthatcopiesarenotmadeordistributedforprofitorcommercialadvantageandthatcopiesbearthisnoticeandthefullcitationonthefirstpage.Tocopyotherwise,torepublish,topostonserversortoredistributetolists,requirespriorspecificpermissionand/orafee.

Copyright2001ACMX-XXXXX-XX-X/XX/XX...$5.00.

Degree of Concernfor Own Outcomes

CompetiveCooperative

Sharing

(Compromising)

Avoidant

Accommodative

Degree of Concern for Other’s Outcomes

Figure1:Thedualconcernmodel

theentireagentorganization.

Multi-agentsystemwillthusconsistoflargegroupsoflooselycoupledagentsthatworktogetherontasks.Therelationshipsamongagentswilldependontheirorganizationalrolesandmaybeofanytypefrompurelyself-interestedtototallycooperative.Thisisthecomplexorganizationalproblemspacethe[12,13]frameworkisdesignedtorepresent.Notethatthisworkpertainstocomplexagents.WeassumethatAgentsareautonomous,heterogeneous,persistent,computingentitiesthathavetheabilitytochoosewhichtaskstoperformandwhentoperformthem.Agentsarealsora-tionallybounded,resourcebounded,andhavelimitedknowledgeofotheragents.1Agentscanperformtaskslocallyiftheyhavesufficientresourcesandtheymayinteractwithotheragents.Theagentswillhavechoicesaboutwithwhomtocollaborate,howtonegotiate,whattochargeforservices,etc.Further,thenegotiationstrategywillbedependentontherelationshipsamongthenegotiat-ingpartiesandtheparticularnegotiationissue.

Wethereforefeelthatinacomplexagentsociety,anagentwillneedtoworkwithotheragentsfromavarietyofdifferentorgani-zationalpositions.Forexample,anagentfromitsowngroup,anagentwhohasahigherpositionandthusmoreauthority,anagentfromacooperativecompany,oranagentfromacompetingcom-panyandsoforth.Theagent’sattitudetowardnegotiationisnotjustsimplyeithercompetingorcooperative,theagentneedstoqualita-tivelyreasonabouteachnegotiationsession,e.g.,howimportantitsownoutcomeiscomparedtotheotheragents’outcomes,soitcanchooseanappropriatenegotiationstrategy.

Figure1describesthisdualconcernmodel[6].Whentheagentonlyattachesimportancetoitsownoutcome,itsattitudetowardnegotiationiscompetitive(self-interested);whenanagentattachesthesamedegreeofimportancetoitsownoutcomeasitdoestotheoutcomesoftheotheragent,itsattitudeiscooperative;whentheagentattachesmoreimportancetotheoutcomesofotheragentsandnoimportancetoitsownoutcome,itsattitudeisaccommodative;iftheagentattachesnoimportancetoanyoutcomes,itsattitudeisavoidant(thenegotiationisnotworthitstimeandeffort).Fromthismodel,wefindthattherearepotentiallymanyoptionsbetweenthetwoextremesofself-interestedandcooperative.Theseotheroptionsdependontheimportancetheagentattachestotheincreaseofitsownutilityrelativetotheimportanceitattachestotheotheragents’utilityincreases.

Inthispaper,wepresentanintegrativemechanismthatenablesanagenttoqualitativelymanageitsattitudetowardseachnegotia-tionsession.Thismechanismisnotpurelyself-interestedorpurelycooperative,butsupportsrangesofthesebehaviorssothattheagent

Foreachbelongingtoanagent,ithasapreferencefunctionorutilitycurve,aparticularquantityofthe

,that,describesi.e.,itspreferencefor

thatwhereistheutilityassociated

suchwith

andisnotdirectlyinterchangeablewithunless.Differentagentsmayhavedifferentpreferencesfor

thesame

.Preferencesintheframeworkaredefinedbytherelationbetweentaskperformanceandorganizationalgoalsordirectives.

Anagent’soverallutilityatanygivenmomentintimeisa

functionofitsdifferentutilities:

.Wemakenoassumptionsaboutthepropertiesofthatitenablesagentstodeterminepreferenceordominance,onlybetweentwodifferentagentstateswithrespecttos.

MQTasksareabstractionsoftheprimitiveactionsthattheagentmaycarryout.tasks:

Mayhavedeadlines,,fortaskperformancebe-yondwhichperformanceofsaidtaskyieldsnousefulresults.

Mayhaveearlieststarttimes,,fortaskperformancebeforewhichperformanceofsaidtaskyieldsnousefulre-sults.Eachtaskconsistsofoneormorealternatives,whereonealternativecorrespondstoadifferentperformanceprofileofthetask.Inmanyways,thisextensionsimplifiesreasoningwiththepreliminarymodelpresentedin[12]whileatthesametimeincreasingtherepresentationalpoweroftheframeworkbycouplingdifferentdurationswiththeotherper-formancecharacteristics.Eachalternative:

–Requiressometimeordurationtoexecute,denoted.–Producessomequantityofoneormoreproductionset(s,calledanMQ,where),whichisdenoted.by:

Thesequantities

arepositiveandreflectthebenefitderivedfromperformingthetask,e.g.,progresstowardagoalortheproductionofanartifactthatcanbeexchangedwithotheragents.Inthismodel,thetwoareequivalent.–Akintothe,tasksmaycalleds.anTheMQspecificationconsumptionofsetthealsoanddenoted

sconsumeconsumedquantitiesbyataskof

is,where.Consumptionsetsmodel

tasksconsumingresources,orbeingdetrimentaltoanorga-nizationalobjective,oragentscontractingworkouttootheragents,e.g.,payinganotheragenttoproducesomedesiredre-sultoranotheragentaccumulatingfavorsorgoodwillastheresultoftaskperformance.Consumptionsetsarethenegativesideoftaskperformance.

–Allquantities,e.g.,,

fromanexpectedvaluestandpoint.

,,arecurrentlyvieweddefinesquantitiesthatarerequiredfortaskperfor-mance.Ifatasklackssufficientsforexecutionitisdeemedun-executableandwillnotbeperformedinanyfash-ion.Thismeansitwillhavezeroduration,consumezero

s,andwillproducezeros.

Spacelimitationsprecludeafullpresentationofthemodel,butitissufficientforunderstandinghowourintegrativenegotiationframeworkisbuiltupontheMQframework2.

related

MQandrelationalMQ.Theseclassesareconceptualandusedtoclearlydifferentiatemotivationsfortaskperformancefromatti-tudestowardnegotiationissues–inreality,theyarebothsimplyMQs.Goal

relatedMQs,theagentcollectsMQsforitsown

utilityincrease.Inthissense,agentB’sperformanceoftasktismo-tivatedby“self-interested”reasonsifpaymentisviaagoal

xtransferredwithit,and

foragentB,theutilitycurveofMQ

MQ

relatedMQs,itis“self-interested”fortheagent’sonly

concernsisitsownutilityincrease.

Consideramodifiedcase.Supposethatbyhavingtasktaccom-plishedagentA’sownutilityincreasesby20units.IfagentBtakesthisfactintoconsiderationwhenitmakesitsdecisionabouttaskt,agentBiscooperativewithagentAbecauseagentBisalsocon-cernedaboutagentA’soutcome(inadditiontoitsown).IfwewantagentBtoconsiderA’sutility,weneedtointroduceanotherMQdesignedtomodelB’s(revised)preferenceforAtohaveautil-ityincreasealso.ToreflecttheB’sattitudetowardA’soutcome,weintroducearelationalMQ,thepreferenceforwhichrepresentshowcooperativeagentBiswithagentAconcerningtaskt.Let

whenagentbeBtheperformsrelationaltaskMQtfortransferredagentA.fromSinceagentAtoisagentarela-B

tionalMQ,itsonlypurposeistomeasuretherelationshipbetweenagentsAandB.WhileagentBmayactuallyhaveanorganizationalgoaltoaccumulatesofthistype3,inthispaper,forsimplic-ityofpresentation,wewillassumethatagentBdoesnothaveanorganizationallevelgoaltocooperatewithagentA.Accordingly,whenmeasuringtheutilityofagentBtowardproblemsolving,wewillnotconsidertheutilityproducedbyanyrelationalMQssuchas

toagent.B,LikewisewewillwithnotagenttabulateA.WhenthenegativeagentAchangetransfers

inutilityofagentAbecausethechangeinutilityisnotrelatedtoproblemsolv-ingprogressbutisinsteadrelatedtothetransferofarelationalMQ.Thereasonforthisapproachisthatinthispaperourperformancemetricissocialwelfareasitisconventionallyused,whichisintermsofprogresstowardjointgoals.Fromthisview,theutilityproducedbyarelationalMQcanbeseenasvirtualutility.Though

producesvirtualutility,isimportantbecauseitcarriesthe

informationofhowimportanttasktisforagentA4andmakesitpossibleforagentBtoconsideragentA’soutcomewhenitmakesitsowndecisions.Actually,howB’s(virtual)utility,meaningutilitythatisnotismappedincludedintointheagentso-cialwelfarecomputation5dependsonhowcooperativeagentBiswithagentA.Supposethat20unitstaskt,representingtheutilityagentAgainedarebytransferredhavingagentwithBperformtaskt,transferredtoagentB,Figure2showsfourdifferentfunctionsformappingFunctiona,bandcarelinertofunctions:

agentB’sutility.If.(a),theutilityagentAgainedbytransferring6t),thenagent(Bdenotesiscom-pletelycooperativetoagentA;If(b),,thenagentBis

related

MQ)toagentB,agentBandagentAcannegotiateaboutwhattypeofgoal

related

MQsarefixedandagentsdonotnegotiateaboutthem,sowecandemonstratehowtherelationalMQworks.

Themappingfunctioncouldalsobeanonlinearfunction(d)thatdescribesamorecomplicatedattitudeofagentBtoagentA,i.e.,agentBbeingfullycooperativewithagentAforsomeperiodandthenbecomingself-interested.Anagentcanadjusttheutilitymap-pingfunctiontoreflectitsrelationshipwithanotheragent,whichcouldbeit’sadministrator,colleague,friend,clientorcompetitor.Byadjustingsomeparametersinthemappingfunction,moresub-tlerelationshipscouldbemanaged.Theagentcoulddifferentiateafriendlycolleaguefromanunfriendlycolleague,alsoitcoulddrawdistinctionsbetweenabestfriendandanordinaryfriend.Differentfromthegoal

Outside AgentOutside AgentOutside AgentShipping_ComputerShipping_ProductWholeSale_ComputerminTransport AgentProduce_ComputerminenablesShipping_Computertime: 6Purchase_PartsGet_HardwareGet_SoftwareenablesInstall_Softwaretime: 10Hardware Producer AgentGet_Hardwaretime: 10enablestime: 10Computer Producer AgentFigure3:AgentSociety

canbelearnedfromexperience[10].

IntheMQframework,theMQschedulerenablestheagenttoop-timizeitsscheduleandmaximizeitlocalutility.Whiletheframe-workdirectlysupportstheconceptofrelationalsandbeingmotivatedtocooperateonthatbasis,theuseoftransferenceinthispaperextendstheMQframeworktointerconnectthelocalschedulingproblemsoftwoormoreagentsinadynamicfashion(basedonthecurrentcontext).Priortothiswork,nomeaningful

transferenceortheimplicationsofit.workhadbeendonein

Inthissection,weintroduceanexampleofathree-agentsocietyandshowhowtheintegrativenegotiationmechanismworksusingtheMQframework.

Parts”taskfrom

anoutsideagentwithxunitsMQ

Hardware”taskalwaysgoestoHardwareProducerAgent

Product”withafixedrewardof3unitsMQ

taskalwaysgoestoTransportAgentwithafixedrewardof3unitsMQComputer”taskcomestoComputerPro-ducerAgentwitharewardof20unitsMQ

Hardware”and“Ship-ping

Hardware”and7units

ferredwithtask“Shipping

trans-

4.THESCENARIO

TherearethreeagentsinthissocietyasshowninFigure3:1.ComputerProducerAgent(c):receives“Produce

Computer”

task,ComputerProducerAgentneedstogenerateanexternalrequestforhardware(“Get

Computer”)throughatrans-portagent.

2.HardwareProducerAgent(h):receivestask“Get

Parts”

taskfromanoutsideagent.

3.TransportAgent(t):receivestask“Shipping

Product”

taskfromanoutsideagents.Inthisexample,everyagentcollectsthesametypeofgoal

$”.Theutilitycurvefor“MQ

hc/t”withthetaskrepresentstheutilityincreaseofCom-puterProducerAgentbyhavingthistaskaccomplished.HowitismappedintoHardwareProducerAgent’svirtualutilitydependsonHardwareProducerAgent’sattitudetowardstheutilityincreaseofComputerProducerAgentregardingtask“Get

Computer”taskcouldbefinishedearlierthanitsdead-line,ComputerProducerAgentcouldgetmorethan20unitsre-ward.Theextrautilityincreasecouldbeestimatedandreflectedby

tc/t”fortheothermorethan7unitstransferred”MQ

twoagents.SupposethefollowingtaskisreceivedbyComputerProducerAgent:

taskname:PurchaseAearlieststarttime:10deadline:70

reward:20unitsMQ

$”).

earlyfinishrewardrate(e):Iftheagentcanfinishthetaskbythetime(ft)asitpromisedinthecontract,itwillgettheextraearlyfinishreward:max(e*r*(dl-ft),r)7inadditionto

$.Itslocalutilityincreasesby20unitsaftertheaccomplish-

mentofthistask.HencethefollowtwotaskrequestsaresenttoHardwareProducerAgentandTransportAgentrespectively:

taskname:Get

Aearlieststarttime:10deadline:20

reward:3unitsMQhc/t”

earlyfinishrewardrate:e=0.01

9

taskname:Shipping

Aearlieststarttime:30deadline:40

reward:3unitsMQ

tc/t”earlyfinishrewardrate:e=0.01

Inthisexample,welookatthreedifferentattitudeswithalinerfunction:.

1.k=1,HardwareProducerAgentiscompletely-cooperativetoComputerProducerAgentregardingtask“Get

Hardware”.

3.k=0,HardwareProducerAgentisself-interestedtoCom-puterProducerAgentregardingtask“Get

Parts

PartsHardware

Hardware

$,3],[MQ

Parts

$,4]

taskname:PurchaseB

earlieststarttime:10deadline:20processtime:10MQPS:[MQ

Parts$insteadof9units,thebestMQscheduleproducedisasfollowing:

HardwareProducerAgentwillhave7unitsutilityincreaseaftertheaccomplishmentofthisschedule.

Computer”itreceives.

AsimilarreasoningprocessalsoappliestotheTransportAgent.

Theaboveexampleshowshowanagentreactsinanegotiationpro-cessdependsonitsattitudetowardstheotheragentregardingthisissue,andalsoisaffectedbytheothertasksonitagenda.Themorecooperativeanagentis,themoreitwillsacrificeitsownutilityfortheotheragent’sutilityincrease.Thisintegrativenegotiationmechanismenablestheagenttomanageandreasonaboutdifferentcooperativeattitudesitcouldhavewithanotheragentregardingacertainissue.

5.EXPERIMENT

TheexampleinSection4showsthatanagentneedstosacrificesomeofitsownutilitytobecooperativewithanotheragent.Thequestionis:Couldcooperativeagentsmakethesocialwelfare10better?Isitalwaystruethatacooperativeagentcouldimprovethesocialwelfare?Whenshouldanagentbecooperativeandhowcooperativeitshouldbe?

Toexplorethesequestions,thefollowingexperimental11workwasdonebasedonthescenariodescribedinSection4.HardwarePro-ducerAgenthasachoiceofthreedifferentattitudestowardCom-puterProducerAgent:completely-cooperative(C),half-cooperative(H),andself-interested(S),TransportAgenthasthesamethreechoices,sothereare9combinations:SS(bothagentsareself-interested),SC(HardwareProducerAgentisself-interestedwhileTransportAgentiscompletely-cooperative),SH(HardwarePro-ducerAgentisself-interestedwhileTransportAgentishalf-cooperative),HS,HC,HH,CS,CH,CC.Thedataiscollectedover48groupsofexperiments;ineachgroupofexperiments,theagentsworkonthesameincomingtasksetundertheninedifferentsituations.Thetasksineachsetforeachgroupexperimentarerandomlygener-atedwithdifferentrewards,deadlinesandearlyrewardrateswithincertainranges.

Table1showsthecomparisonofeachagent’sutilityandtheso-cialwelfareunderthesedifferentsituations.Thepercentagenum-bersarethenormalizedutilitynumbersbasedontheutilitygainedwhenagentisself-interested.Table1showsthatwhenbothHard-wareProducerAgentandTransportAgentarecompletely-cooperativetoComputerProducerAgent(CC),thesocietygainsthemostso-cialwelfare.Evenwhenbothagentareonlyhalf-cooperative(HH),thesocialwelfareisstillverygood.However,whenoneagentiscompletely-cooperative,theotheragentisself-interested(CS,SC),thesocialwelfaredoesnotimprovemuchcomparedtothecom-pletelyself-interested(SS)case.Thereasonforthelackofsig-nificantimprovementisthat,inthisexample,toaccomplishtask

“Produce

Hardware”andtask“Shipping

Computer”maystillfailbecausetheotheragentisnotcoop-erative,theutilityofComputerProducerAgentdoesnotincreaseasexpected,andtheglobalutilitydoesnotimprove.Thishap-penswhenthecompletionofataskisspreadovermorethantwoagents,theinformationfromComputerProducerAgentaboutitsutilityincreaseisonlyanestimation,itdependsnotonlyontask“Get

Computer”forTransportAgent.Inthissituation,

Producer

Percentage

SS

842

HH

301

CS

390

SH

632

CH

3.681.36

500

2.24

467

2.84

587

1.000

415

Percentage1.000

766

0.86

798

0.63

845

1.02

772

0.70

Table1:comparisonofperformance

Percentage1.000

2022

0.94

1686

0.98

1702

0.95

1905

0.94

Percentage1.0001.141.011.031.19

Object

330

HH-SS

0

CS-SS

Ho

Result

330

RejectHo

p

0.01

0.0008

0.01

0.0965

=180

0

=0FailtorejectHo

Table2:resultsfromstatisticaltests

ifHardwareProducerAgenthasnoknowledgeabouttheattitudeofTransportAgent,itmaynotbeagoodideatobecompletely-cooperativetowardsComputerProducerAgent.TheabovedataalsoshowsthattheutilityofTransportAgentdoesnotdecreasesasmuchasHardwareProducerAgentwhenitbecomescoopera-tiveorhalf-cooperative,thereasonisthefollowing.Intheexper-imentalsetup,task“Shipping

Hardware”,soitispossibleforTransportAgenttoac-ceptmoretaskswithoutlosingtoomanyhighrewardtasksfromtheoutside.

Table2showssomestatisticalresultsaboutthedifferencebe-tweenthesocialwelfareunderdifferentcooperativesituationsus-ingt-test.Forexample,thefirstlineinTable2showsthatwiththe0.01Alpha-level,wecanacceptthestatementthatthesocialwel-fareofthesystemwhenbothagentsarecooperativeisatleast20%betterthanwhenbothagentsareself-interested12.

Table3showstheexpectedutilitiesofHardwareProducerAgentandtheexpectedsocialwelfareunderthethreepossiblesituations:whenHardwareProducerAgentisself-interested,completely-co-operativeandhalf-cooperative.WhenHardwareProducerAgentchoosesoneattitude,TransportAgentmayadoptoneofthethreedifferentattitudes.Forexample,whenHardwareProducerAgentchoosestobeself-interested,theglobalsituationcouldbeSS,SC,orSH.Theutilitynumberinthetableintheexpectedvalueoftheutilitiesunderthesethreedifferentsituations.Table4showssim-ilarinformationforTransportAgent.Table3tellsusthatwhenacooperativeoperationinvolvesmorethantwoagentsandwhentheotheragents’attitudesareunknown,beingcompletely-cooperativemeanssacrificingitsownutilitysignificantlyandthusisnotagoodidea.However,itisagoodchoiceforanagenttobehalf-cooperative,sacrificinglessofitsownutilityformoreglobalutilityincrease.Thisisanexamplewherethelackofacompleteglobalviewcanbepartiallycompensatedforbyhavinganagentactinginapartiallycooperativeattituderatherthanbeingfullycooperative.FortheTransportAgentwhichdoesnotneedtosacrificetoomuchtobecompletely-cooperative,itshouldalwayschoosetobecompletely-cooperative.

Percentage

583

Completely-Cooperative

487

0.68

18311679

Percentage

1.13

UtilityofTransport

Agent

Self-Interested

803

Half-Cooperative

0.971.0

SocialWelfare

1.0

1846

1.05

Table4:theutilityofTransportAgentandthesocialwelfare

realisticdomainswheretaskscarryreal-timeconstraintsandtherearepotentiallycomplexinterrelationshipamongtasksdistributedoverdifferentagents.Otherrelatedworkincludesthecooperativenegotiationworkontaskallocation[15],wheretheagentsusethemarginalutilitygainandmarginalutilitycosttoevaluateifitworthtoacceptataskcontractinordertoincreasetheglobalutility.How-everinthiswork,theagentactsasina“completely-cooperative”modedescribedinthispaperandthereisnochoiceonhowcoop-erativeitwanttobe.

[6]RoyJ.LewickiandJosephA.LittererNegotiation1985,

RichardD.Irwin,Inc.Homewood,Illinois.

[7]EugenioOliveira,AnaPaulaRocha.Agentsadvanced

featuresfornegotiationinElectronicCommerceandVirtualOrganisationsformationprocessInC.SierraandF.Dignum,editors,BookonEuropeanperspectivesonAMEC.Springer-Verlag,June2000.

[8]TuomasSandholmandVictorLesserIssuesinAutomated

NegotiationandElectronicCommerce:ExtendingtheContractNetFramework.ProceedingsoftheFirstInternationalConferenceonMulti–AgentSystems,pp.328-335,MITPress,1995.

[9]Sandholm,T.andLesser,V.1996.AdvantagesofaLeveled

CommitmentContractingProtocol.ThirteenthNationalConferenceonArtificialIntelligence(AAAI-96),pp.126-133,Portland,OR,.

[10]SandipSenReciprocity:afoundationalprinciplefor

promotingcooperativebehavioramongself-interestedagentsinProc.oftheSecondInternationalConferenceon

MultiagentSystems,pages322–329,AAAIPress,MenloPark,CA,1996.

[11]SandipSenandEdmundH.DurfeeAFormalStudyof

DistributedMeetingSchedulingGroupDecisionandNegotiation,volume7,pages265-289,1998.

[12]Wagner,ThomasandLesser,Victor.RelatingQuantified

MotivationsforOrganizationallySituatedAgents.InIntelligentAgentsVI:AgentTheories,Architectures,andLanguages,Springer

[13]ThomasWagnerandVictorLesserEvolvingReal-Time

LocalAgentControlforLarge-ScaleMASIntelligentAgentsVIII(ProceedingsofATAL-01)editor,”J.J.MeyerandM.TambeSpringer-Verlag,Berlin,LectureNotesinArtificialIntelligence,2002

[14]Vincent,R.;Horling,B.;Lesser,V.AnAgentInfrastructure

toBuildandEvaluateMulti-AgentSystems:TheJavaAgentFrameworkandMulti-AgentSystemSimulator.InLectureNotesinArtificialIntelligence:InfrastructureforAgents,Multi-AgentSystems,andScalableMulti-AgentSystems.Volume1887,Wagner&Rana(eds.),Springer,pp.102127,2000

[15]Zhang,XiaoQin;Podorozhny,Rodion;Lesser,Victor.

Cooperative,MultiStepNegotiationOvera

Multi-DimensionalUtilityFunction.InProceedingsoftheIASTEDInternationalConference,ArtificialIntelligenceandSoftComputing(ASC2000),136-142,Banff,Canada,July,2000,IASTED/ACTAPress.

7.CONCLUSIONANDFUTUREWORK

Weintroduceanintegrativenegotiationmechanismwhichen-ablesagentsinteractoveraspectrumtomanageofnegotiationat-titudesfromself-interestedtocompletely-cooperativeinauniformreasoningframework,namelytheMQframework.Theagentnotonlycanalsochoosetobeself-interestedorcooperative,butcouldchoosehowcooperativeitwantstobe.Thisprovidestheagentacapabilitytodynamicallyadjustitsnegotiationattitudeinacom-plexagentsociety.Experimentalworkshowsitmaynotbeagoodideatoalwaysbecompletely-cooperativeinasituationinvolvinganunknownagent’sassistance;inthatcase,choosingtobehalf-cooperativemaybegoodforboththeindividualagentandalsoforthesociety.Inthefutureweplantoexploreadditionalquestionsusingthisframework,suchas:howshouldanagentchooseitne-gotiationattitudebasedonitslearningfrompastexperience?Howdoesdifferentattitudesaffectstheagent’sperformanceandtheso-cialwelfareindifferentorganizationalcontexts?andsoforth.

8.REFERENCES

[1]Axelrod,R.TheEvolutionofCooperation.BasicBooks.[2]Conry,S.E.,Kuwabara,K.,Lesser,V.R.andMeyer,R.A.

MultistageNegotiationinDistributedConstraintSatisfactionInIEEETransactionsonSystems,ManandCybernetics,Volume21,Number6,pp.1462-1477,November,1992.[3]AlyssaGlassandBarbaraGrosz2000.SociallyConscious

Decision-Making.IntheProceedingsofAgents2000

Conference,Barcelona,Spain,June3-7,2000.pp.217-224.[4]Horling,Bryan,Lesser,Victor,Vincent,Regis.Multi-Agent

SystemSimulationFramework.In16thIMACSWorldCongress2000onScientificComputation,Applied

MathematicsandSimulation,EPFL,Lausanne,Switzerland,August2000.

[5]Lander,S.andLesser,V.UnderstandingtheRoleof

NegotiationinDistributedSearchAmongHeterogeneousAgents.InProceedingsoftheInternationalJointConferenceonArtificialIntelligence,1993.

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- zrrp.cn 版权所有

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务