CHRISTOPHERKIEKINTVELD,MICHAELP.WELLMAN,SATINDERSINGH,andVISHALSONIUniversityofMichigan
TheTACsupply-chaingamepresentsautomatedtradingagentswithchallengingdecisionprob-lems,includingprocurementofsuppliesacrossmultipleperiodsusingmultiattributenegotiations.Theprocurementprocessinvolvessubstantialuncertaintyandcompetitionamongmultipleagents.Ouragent,DeepMaize,generatesrequestsforcomponentsbasedondeviationsfromareferenceinventorytrajectorydefinedbyestimatedmarketconditions.Itthenselectsamongsupplieroffersbyoptimizingavaluefunctionoverpotentialinventoryprofiles.ThisapproachofferedstrategicflexibilityandachievedcompetitiveperformanceintheTAC-03tournament.
CategoriesandSubjectDescriptors:I.2.11[ArtificialIntelligence]:DistributedArtificialIntel-ligence—intelligentagentsandmultiagentsystems;J.4[ComputerApplications]:SocialandBehavioralSciences—economicsGeneralTerms:Algorithms,Economics
AdditionalKeyWordsandPhrases:TradingAgents,E-Commerce,SupplyChains
1.INTRODUCTION
TheTradingAgentCompetitionSupplyChainManagementscenario(TAC/SCM)wasdesignedtoposeacomplexmulti-tiered,multi-periodproblemforautomatedtradingagentsinaplausiblesupplychaingame[Sadehetal.2003].TheTAC/SCMenvironmentischallengingformanyreasons.Oneisthatagentsarefacedwithsub-stantialuncertainty:aboutthelocalstateofotheragentsinthegame,aswellastheunderlyingdemandandsupplyprocesses.Theenvironmentisalsostrategic,comprisingsixprofit-maximizingproduceragents.Agentsmustnegotiatemultiat-tributedealswithsuppliersandcustomers,sotheymustbeabletoreasonabouttherelativevaluesofthoseattributes.Finally,theSCMgameforcesagentstomakedecisionsovermultiplestages,andondifferenttimescales.Agentsmustmakede-cisions(e.g.,componentprocurement)beforeallrelevantuncertaintyisresolved(e.g.,customerdemand,futurecomponentprices).
WedesignedtheUniversityofMichigan’sagent,DeepMaize,toparticipateinthe
Author’saddress:ComputerScienceandEngineeringDivision,UniversityofMichigan,AnnAr-bor,MI48109.
Email:{ckiekint,wellman,baveja,soniv}@umich.edu
Permissiontomakedigital/hardcopyofallorpartofthismaterialwithoutfeeforpersonalorclassroomuseprovidedthatthecopiesarenotmadeordistributedforprofitorcommercialadvantage,theACMcopyright/servernotice,thetitleofthepublication,anditsdateappear,andnoticeisgiventhatcopyingisbypermissionoftheACM,Inc.Tocopyotherwise,torepublish,topostonservers,ortoredistributetolistsrequirespriorspecificpermissionand/orafee.c2004ACM0000-0000/2004/0000-0009$5.00
ACMSIGecomExchanges,Vol.4,No.3,February2004,Pages9–18.
10
·
Kiekintveldetal.
2003TAC/SCMtournament.DeepMaizeemploysdistributedfeedbackcontroltocoordinateitsvariousmodulesandoperaterobustlydespitedynamicuncertainty.Itsoverallfeedback-controlapproachandthespecificmethodsbywhichDeepMaizesetsitsreferenceinventorytrajectoryaredefinedelsewhere[Kiekintveldetal.2004].Herewefocusonhowtheagentmanagesitsprocurementactionsgiventhereferencetrajectory,byoptimizingavaluefunctionoverpotentialinventoryprofiles.
Valuefunctionrepresentationshavebeenusedtomakedecisionsinotherman-ufacturingcontexts.Forexample,Schneideretal.[1998]formulateaproductionschedulingproblemasaMarkovDecisionProcess(MDP)andusereinforcementlearningmethodstoapproximatethevaluefunctionofthisMDP.ThedecisionproblemweaddressdoesnotfittheassumptionsoftheMDPmodelandmustbemadeinthecontextofalargeragentmakingmanydistributedbutinterrelateddecisions.Ourapproachusesaheuristicvaluefunctionrepresentationthatincor-poratesvaluesfromseveraldifferentsourcesinsupportofasingledecision.2.
PROCUREMENTDECISIONSINTAC/SCM
EachdaySCMagentsmustmakeseveraldecisions,twoofwhichcomprisetheprocurementpolicy:(1)WhatRFQstoissuetocomponentsuppliersand(2)Oftheoffersreceivedfromsuppliers,whichtoaccept.Thereareeightsuppliers,eachproducingtwocomponenttypesfromfourcategoriesofcomponents:CPU,moth-erboard,memory,andharddisk.ThefourCPUtypesareeachsoldbyasinglesupplier;thetwotypesofcomponentsinallothercategoriesareeachsoldbytwosuppliers.Eachsupplierhasanominalcapacitytoproduce500perdayofeachcomponenttypeitsupplies.Actualproductionvariesaboutthiscapacityinaran-domwalk.Toacquirecomponents,anagentsendsRFQstoasupplier(uptotenpersupplierperday,inpriorityorder),eachspecifyingadesiredquantityandduedate.Thesupplierrespondsthenextdaywithoffersspecifyingquantity,duedate,andprice,andreservessufficientcapacitytomeetthesecommitments.Ifprojectedcapacityisinsufficienttomeettherequestedquantityanddate,thesupplierinsteadoffersapartialquantityattherequesteddateand/orthefullquantityatalaterdate.Suppliersassumenominalcapacitywhenprojectingfutureavailability.Togenerateresponses,suppliersexecutethefollowinguntilallRFQsareexhausted:(1)randomlychooseanagent,(2)takethehighest-priorityRFQremainingonitslist,(3)generateanoffer,ifpossible.Agentsmustacceptordeclineeachofferthedaytheyreceiveit.
Supplierssetpricesbasedonananalysisofavailablecapacity.TheTAC/SCMcomponentcatalog[Arunachalametal.2003]associateseverycomponentcwithabaseprice,bc.Thecorrespondencebetweenpriceandquantityforcomponentsuppliesisdefinedbythesuppliers’pricingformula.Thepriceofferedbyasupplieratdaydforanordertobedeliveredondayd+iis
κc(d+i)
,(1)500i
whereκc(j)denotesthecumulativecapacityforcthesupplierprojectstohaveavailablefromthecurrentdaythroughdayj.Thedenominator,500i,representsthenominalcapacitycontrolledbythesupplieroveridays,notaccountingforanycapacitycommittedtoexistingorders.
pc(d+i)=bc−0.5bc
ACMSIGecomExchanges,Vol.4,No.3,February2004.
DeepMaizeProcurementinTAC/SCM
·
11
3.DEEPMAIZEREFERENCEINVENTORYTRAJECTORY
Thereferenceinventorytrajectoryisthesumofthreesourcesofcomponentrequire-ments:(1)outstandingcustomerorders,(2)expectedfuturecomponentutilization,and(3)baselinebufferlevels.First,outstandingcustomerordersentailaknownrequirementforspecificcomponentsintimetoproducetheorders.
Second,wederivethetimeseriesofexpectedfuturecomponentutilization,basedonprojectionsoffuturecustomerdemandforPCsandmarketequilibriumcalcula-tions.TheprojectionofcustomerdemandusesadynamicBayesiannetworkmodeltoestimatetheunderlyingdemandstateandprojectthesevaluesforwardusingthespecifiedsystemdynamics.Marketequilibriumisderivedforeachdaybycalcu-latingtheprices(basedonEq.(1))atwhichthesupplywouldequaltheprojectedcustomerdemand.DeepMaizeassumesthatitwillgarner,onaverage,neworderscovering1/6oftheequilibriumquantityQdfordayd,evenlydistributedacrossthepossiblePCtypes.Toaccountforunpredictabilityinthedemandtrends,wesetasomewhatmoreconservativereference,basedonthedemandquantityQsatis-fyingPr(Qd≥Q)=0.63(0.63waschosensomewhatarbitrarily).Overtherangewhereexistingandprospectivecustomerordersoverlap,wephaseintheexpectedutilizationproportionately.
Thefinalcontributortoourinventoryreferenceisabaselinebufferlevel,main-tainedtomitigateshort-termnoiseinprocurementandsalesactivityandallowtheagenttoactmoreopportunistically.Forthetournament,DeepMaizesetthebaselinelevelat6.0timesthecurrentexpecteddailyconsumption(alsosomewhatarbitrary).Thislevelisscaledgraduallytozeroattheendofthegame,atwhichpointinventoriesbecomeworthless.Thesumoftheserequirementsrepresentsthetrajectoryofgrossinventoryrequirements.Todeterminethenetreferencetrajec-tory,wesubtractthecurrentinventoryofcomponents(includingthosecontainedinfinishedPCs)plusanticipateddeliveriesofcomponentsalreadypurchasedfromthegrossrequirements.
4.DEEPMAIZEPROCUREMENTPOLICY
EachdayagentsissueRFQstosuppliersandacceptorrejectsupplieroffersre-ceivedinresponsetothepreviousday’sRFQs.DeepMaizeappliesthesameRFQ-generationandoffer-acceptancepoliciestoeverydayofthegame,withonesig-nificantexception:theverybeginningofthegame(day0).Thesupplierpricingformulaprovidesastrongincentivetoprocurelargequantitiesofcomponentsonthisday,aspricesareattheirlowestandavailabilityisashighasitwilleverbe.1Asaresult,inTAC-03agentsemployedincreasinglyaggressiveday-0procure-mentpolicies,leadingtoamutuallydestructiveovercapacityofcomponentsfortheaggregatesystem.Weanticipatedthiseffectandintroducedourownpreemptiveday-0strategythatneutralizedthisbehaviorsomewhatand,ineffect,reestablishedasettingwhereinagentshadtoprocuresuppliesthroughoutthegame.Thedetailsofourday-0strategyanditseffectsaredescribedinaseparateaccount[Estelleetal.2003].Forourpresentpurpose,itsufficestonotethatweemployedspecialRFQgenerationandofferacceptancestrategiesattheverybeginningofthegame.
1Due
toitsdistortingeffects,thiswillbemodifiedforthe2004tournament.
ACMSIGecomExchanges,Vol.4,No.3,February2004.
12
·
Kiekintveldetal.
4.1RFQGeneration
DeepMaizegeneratesRFQstoreducethedifferencebetweenthecurrentandref-erenceinventorytrajectories.Threeelementsofthereferencetrajectoryarecon-sideredinturn:outstandingcustomerorders,baselinebufferlevel,andexpectedfuturecomponentutilization.Thisprioritizationtakesintoaccounttheimmediacyofcurrentordersandsubsequentopportunitiestoprocurecomponentsforfutureconsumption.TAC/SCMlimitsagentstotenRFQsperdaypersupplier,andDeepMaizeusesalltheseslots.ItgeneratestenRFQs(splitacrosstwosuppliers)foreachnon-CPUcomponenttype,andfiveforeachCPU.
4.1.1RFQsforoutstandingcustomerorders.Figure1depictstheprocessofgeneratingorder-relatedRFQs.Wecomputethecurrentinventorytrajectoryin-cludingcomponentsinassembledPCsaswellasknownfuturecomponentarrivals.Foreachcustomerorderthatcannotbefilledusingcurrentinventory,wegenerateanRFQforthecorrespondingdeficitquantityandduedate.Ifmorethan8RFQsaregenerated,thosewithnearbyduedatesaremergedtostaywithinthisquota.
QuantityInventory ProjectionQuantityPrevious Inventory Projection
New Inventory Projection
Quantity Required(for outstanding customerorders)Due DateDeficit Quantities
(a)
(b)
Due Date
Fig.1.Generatingorder-relatedRFQsforaparticularcomponent.(a)Quantitiesrequiredand(b)Finalcomponentinventoryprojection.RFQsarecreatedforthedeficitquantitiesin(b).
4.1.2RFQsforbaselinebufferlevel.Thecurrentinventorytrajectoryismodi-fiedbyremovingPCsandcomponentsalreadycommittedtooutstandingcustomerorders.AnRFQisgeneratedforthefirstdaythistrajectorydropsbelowthebase-linebufferleveltomakeupthedifference.Ifthisquantityislarge,theRFQissplitintwo,withhalfthequantitysenttoeachsupplierforthecomponenttype.4.1.3RFQsforexpectedcomponentutilization.AnyremainingRFQslotsareusedtorequestcomponentsaddressingthelong-termexpectedcomponentutiliza-tion.ThesamecurrentinventorytrajectoryusedforgeneratingbaselineRFQsisusedagain,andtheexpectedcomponentutilizationcurveissubtractedfromthis
ACMSIGecomExchanges,Vol.4,No.3,February2004.
DeepMaizeProcurementinTAC/SCM
·
13
trajectory.ApotentialRFQisgeneratedforeachdaywherethisquantityisneg-ative.AsubsetoftheseRFQsareselectedtofilltheavailableRFQslots.Theselectionisprobabilisticallybiasedtowardsdayswhencomponentsareexpectedtobecheaper.ToestimateavailablepricesDeepMaizemaintainsanassessmentofeachsupplier’savailablecapacityprofile,basedontheoffersseenandthesupplierpricingfunction.Eachofferyieldsinformationaboutthesupplier’scurrentcapac-ity.Forexample,apartialcompletionoffermeansthatasupplierhasexactlytheofferedquantityavailablebytherequestedduedate,andnomorethantheofferedquantityavailableonanypreviousday.Calculatingtheimplicationsofeveryofferyieldsanupperboundoncapacity(andthuslowerboundonprice)foreachday.4.1.4ProbeRFQs.IfRFQslotsareavailableafterallreferenceinventorytrajec-toryneedshavebeenmet,DeepMaizeissuesprobeRFQs—forasinglecomponentonarandomdate—togarneradditionalinformationaboutsupplierstate.4.2
OfferAcceptance
Theofferacceptancemechanismselectswhichsupplierofferstoacceptbasedonthereferenceinventorytrajectory.DeepMaizemakesitsacceptancedecisionsseparatelyforeachcomponenttype.Foreachofferreceived,itmayhavethreechoices:reject(R),acceptcomplete(AC),oracceptpartial(AP)—thethirdoptionisapplicableonlyiftheofferincludesthisoptionduetothesupplier’sinabilitytoprovidethefullquantitybytherequesteddate.
Givenasetofnoffers,leto=o1···on,oi∈{R,AC,AP},denoteadecisionvector.Theagent’soptimizationproblemistoidentify
argmaxnV(s,o)−Ci(oi),(2)
o∈{R,AC,AP}
i
whereV(s,o)isthevalueoftheinventorytrajectorystartingfromcurrentstates
plustheordersacceptedaccordingtoo.Thestatecomprisesallinformationrelevanttothereferenceinventorytrajectory,includingcurrentinventoryofcomponentsandPCs,anticipatedcomponentdeliveries,andoutstandingcustomerorders.Ci(AC)(respectively,Ci(AP))denotesthecostofacceptingthecomplete(resp.partial)orderi.Foralli,Ci(R)=0.
Thethreesourcesofcomponentrequirementscontributedifferentiallytothevaluefunction.Componentsrequiredtofillexistingcustomerordersarevaluedattheentirepriceoftheorderplusthepenaltychargesavoidedbymeetingtheorder.ThepenaltyamountspecifiedinthecustomerRFQispaideachdayanorderislateuntilitexpires,sothepenaltychargessavedvarydependingonwhentheordercanbemet.Thesevaluesarequitehighcomparedtothecostofanindividualcomponent,implyingthat(almost)anyoffernecessarytomeetanexistingcustomerorderwillbeaccepted,regardlessofprice.Includingpenaltychargesallowstheagenttoreasonaboutcaseswhereanordercanbemetearlierbyacceptingoneofferoveranother,reducingpenaltypayments.Componentsthataddressfutureexpectedconsumptionarevaluedattheexpectedequilibriumpricefortheprojecteddayofconsumption.Thisreflectsanassumptionthatthemarketwillbeinequilibrium,andthusanycomponentsobtainedforlessthantheequilibriumpricewillleadtoprofitablefutureproduction.
ACMSIGecomExchanges,Vol.4,No.3,February2004.
14
·
Kiekintveldetal.
Componentsthatfillbaselineinventoryarevaluedattheequilibriumpriceforthecurrentdayplusabaselinepremium.Thebaselinepremiumisdefinedonaslidingscale,withhigherpremiumvaluesforthefirstcomponents.2Thepremiumvaluesareintendedtoheuristicallyaccountfortwofactors:(1)thefactthatcompo-nentsactuallyhavevalueonlywhencombinedwithothercomponentsand(2)theopportunitycostofhavingproductionconstrainedbyavailablecomponents.Thebaselinevaluesaredecayedbyaconstantmultiplicativefactoreachdaytorepresentabiastowardsachievingthebaselineinventoryassoonaspossible.
Tovalueaninventorytrajectory,westartbycreatingasortedlistofpossiblecomponentvaluesforeachfutureday.Unitvaluescalculatedfromthecurrentreferencetrajectoryaccordingtotherulesaboveareinsertedintothelistforthelastdaytheneedcanbemet.Eachcomponentisthenvaluedinorderofarrival.Thealgorithmlooksforwardfromthedayofarrivaltofindthemaximumpossiblevaluethatcanbeassignedtothecomponentandremovesthisvaluefromthecorrespondinglist.Ifthevalueisfromalaterdaythanthecomponentarrives,thevalueisreplacedwiththehighestvaluefromanearlierday.Thisisnecessarytoensurethatthemaximalsumisalwaysassigned.Toseewhythisisso,considerahighlysimplifiedexamplewithsinglecomponentsarrivingondays0and2andthefollowingunitvaluesforthenextthreedays:OriginalValuesDay0:20,5
Day1:15,10,10Day2:30,15,5
WithoutReplacementDay0:20,5
Day1:15,10,10Day2:15,5
WithReplacementDay0:5
Day1:15,10,10Day2:20,15,5
Thatis,havingoneunitonday0isworth20,andthesecondisworthanadditional5.Thecenterandrightcolumnsreflectthevaluesafterassigning(andremoving)onevalue,withandwithoutreplacement.Withoutreplacement,thevalue30isassignedtothefirstcomponentand15tothesecond.Thesevaluesarenotmaximalsincethefirstcomponentcouldbeassignedthevalue20andthesecondassignedthevalue30withbothcomponentsstillarrivingintime.Byreplacingthevalue30withthevalue20whenitisremovedwecanrepresentthepossibilitythatalaterarrivingcomponentcouldfillthisneed,freeingthefirstcomponenttofillanearlierhigh-valuedneed.
Whenallcomponentsarrivingonagivendayhavebeenvalued,anyremain-ingorder-basedorbaselinevaluesarepropagatedtothenextday,accountingforpenaltiespaid,orderexpirations,anddecayofbaselinevalues.Expectedutilizationvaluesareneverpropagated.Oncetheentireinventorytrajectoryisprocessed,itstotalvalueissimplythesumofthevaluesassignedtoitscomponents.Thenetvalueoftheorder-acceptancedecisionisthisvalueminusthecostofacceptedorders(Eq.2).
Usingthisproceduretoevaluatecandidatechoices,wesetupasearchproblemforeachcomponenttype.Thesearchspaceisdefinedbythepossibleacceptancedecisions.Sincethereareatmostthreepossibledecisionsandn≤10originalRFQs,thereareupto310inventorytrajectoriestoevaluate.Thisistoomanygiventhelimitedtimeavailable(15seconds)foreachday’sdecisions,soweperformalocal
2Values
from25–100%ofthecomponentbasepricewereusedduringthetournament
ACMSIGecomExchanges,Vol.4,No.3,February2004.
DeepMaizeProcurementinTAC/SCM
·
15
TableI.DeepMaizetournamentprocurementbyRFQtype.Pricesarenormalizedtoapercentageofthebaseprice.
StrategicOrdersBaselineUtilizationProbe
PercentageofRFQs0.8%1.7%6.6%27.7%63.3%AcceptanceRate32.3%10.3%24.7%53.0%18.4%PercentageofQuantity51.2%0.7%14.0%33.1%9.4%AveragePrice57.684.868.565.361.4optimizationusinghill-climbingsearch.Totheextentthatanofferisworthwhile
ornotindependentofwhichothersareaccepted,hill-climbingshouldquicklyfindanear-optimalsolution.
Thesearchstartsfromanoderepresentingthestatemaximallyacceptingoffers.Ateachnode,theneighborhoodofstateswithonedecisionchangedisexamined.Ifahigher-valuedstateisfound,thatstatebecomesthenewcurrentsearchnode,anditsneighborhoodisexpanded.Whennohigher-valuedstateisfoundinthisneighborhood,thesearchisextendedtoaneighborhoodincludingstateswithtwodecisionschanged.Searchterminateswhentheextendedsearchfailstofindahigher-valuedstate,orwhentimerunsoutformakingadecision.Toallowequalopportunitytofindreasonableacceptancesetsforallcomponenttypeswerunsearchesforall10typesinparallel,evaluatingonestateeachturn.Onceallsearchesterminate,ordersaresentforthehighest-valuedacceptancesets.5.
DISCUSSION
InthissectionwepresentsomeresultsfromtheTAC-03tournamenttoshowhowDeepMaize’sprocurementstrategyworksinpractice.TableIshowsabreakdownofhowthedifferenttypesofRFQsDeepMaizesendscontributedtoitsprocure-mentduringthesemi-finalandfinalrounds.3Procurementquantitiesweresplitalmostevenlybetweenstrategicandsteady-statebehaviors.Order-basedneedswerethemostexpensivetofill,followedbybaselineandfutureutilizationneeds.Thisisconsistentwiththerelativevaluesassignedtothoseneedsduringtheofferacceptanceprocess,andindicatesthatthepremiumvalueschangetheacceptancedecisionsintheintendedway.DeepMaizepurchasedthebulkofitscomponentsusingthestrategicandfutureutilizationmechanisms,avoidingtheneedtopayhighpremiumsforcomponentsinallbutrareinstances.
WealsocomparedtheaveragepricespaidandquantitiesprocuredbyDeepMaizetotheotherfiveagentsinthetournamentfinals.Theresultsarebrokendownintothreetimeperiods:day0,days1–2,andtherestofthegame.Day0iswhenmostofthestrategicinteractionsplayedout,butRedAgentandDeepMaizebothhadfallbackstrategiesthatprocuredsubstantialadditionalquantitiesimmediatelyafterday0.Days3–219representthedayswhenourprocurementmodulewasusingitssteady-statepolicy.InTableIIweseethatallagentspurchasedasubstantialfractionoftheircomponentsonday0.Whitebearpurchasedcomponentsonlyonday0,butendeduppurchasingfarfewertotalcomponentsthanmostotheragents.All
allgamesplayedbyDeepMaizeexcept1241,1269,and1429whenDeepMaizeexpe-riencednetworkproblems(atotalof28games).WealsonotethatDeepMaizeusedsomewhatdifferentday-0procurementstrategiesinthethreerounds.Thepatternofresultspresentedhereholdswhentheroundsareconsideredindividuallyinsteadofinaggregate.
ACMSIGecomExchanges,Vol.4,No.3,February2004.
3Includes
16
·
Kiekintveldetal.
TableII.ComponentquantitiespurchasedduringdifferentgameperiodsintheTAC-03finalround.CheckmarksindicateastatisticallysignificantdifferencewithDeepMaize(p≤0.05),whilexindicatesalesssignificantdifference(p≤0.10).Agentsarelistedintheordertheyplacedinduringthetournamentfinals.
Day0Days1–2Days3–219Ave.TotalPurchased
RedAgent40.9%x19.5%39.7%254101deepmaize31.1%29.4%39.5%226423TacTex33.0%0.8%66.3%80396Botticelli41.2%x0.0%58.8%213340PackaTAC20.4%3.8%75.8%117545whitebear100.0%0.0%0.0%53571TableIII.Averagenormalizedpricespaidforcompo-nentsduringtheTAC-03finalround.Checkmarksindi-cateastatisticallysignificantdifferencewithDeepMaize
(p≤0.05).
Days0–219Days1-2Days3–219RedAgent0.6330.8220.676deepmaize0.6320.7670.630TacTex0.6410.6560.722Botticelli0.575-.-0.630PackaTAC0.7340.8540.796whitebear0.500-.--.-
otheragentspurchasedthroughoutthegame,withsignificantprocurementactivity
fromdays3–219.
Someinformationabouttheprocurementstrategiesoftheotheragentsafterday0canbefoundintheirpublishedaccounts.RedAgent[KellerandDuguay2004]andPackaTAC[Dahlgren2003]bothusedvariationsofastrategybasedonmaintainingathresholdinventorylevelwithareorderpolicyifinventorylevelsbelowthethresholdweredetected.Bothusedfairlysimpleofferacceptancestrategiesthatdidnotrejectoffersonthebasisofprice.TacTex[PardoeandStone2004]hadaprocurementstrategysomewhatsimilartoDeepMaize’s.Itprojectedinventoryneedsforthenext50daysandissuedRFQstofillthoseneedsfordayswithlowexpectedprices.Offerswereacceptedifmarginalvaluesexceededthecostoftheorder(independentlyfromotheroffers).TacTexprojectsneedsandcalculatesmarginalvaluesbasedonhistoricaldata,whileDeepMaizeusesprojectionsoffuturecustomerdemandandmarketanalysis.Botticelli[Benischetal.2004]didnotconsidertheprocurementdecisionaspartoftheiroveralloptimizationapproachbecauseoftheday-0effects,andWhitebeardidnotpurchaseanycomponentsafterday0.
LookingatTableIIIweseethatDeepMaizeachievedsignificantlybetterpricesthaneveryagentexceptBotticellifromdays3–219.BotticelliandDeepMaizehadalmostidenticalperformance.Inthefirstcolumnweseethatthetopthreeplac-ingagentspaidverysimilaraveragepricesforcomponentsovertheentiregame.PackaTACpaidsignificantlyhigherprices,whileBotticelliandWhitebearpaidlowerprices(inWhitebear’scasebecausetheyonlypurchasedonday0).Interestingly,lookingonlyattheseprocurementnumbersBotticelliappearstohavethemostefficientoverallprocurementstrategy.Itpurchasedasimilartotalquantityofcom-ponentsasthetoptwoagents,andpurchasedthemforlowerprices.Thatthisagentplacedfourthoverallistestamenttothefactthataveragepricesdonottell
ACMSIGecomExchanges,Vol.4,No.3,February2004.
DeepMaizeProcurementinTAC/SCM
·
17
thefullstory;whencomponentsarriveandwhattheagentdoeswiththemalsomatter.
ThisanalysisshowsthatDeepMaizehadacompetitiveoverallprocurementpol-icy.Thesteady-statepartofthispolicywasbasedonvalue-drivenprocurementguidedbyareferenceinventorytrajectory.Itwasflexibleenoughtoexpressmanytypesofprocurementrequirements,androbustenoughtobeusedinconjunctionwithseveralinitialprocurementstrategies.Thetournamentbehaviorofthepro-curementmodulecorrespondedwelltotheintendedbehaviorrepresentedbythevaluefunction.ThisresultedinDeepMaizeachievingaveragepriceperformanceequaltoorbetterthanallotherfinalsagentswhenthesteady-statepolicywasactive.Onecaveattoconsideristhattheimportanceofday0procurementinTAC-03mayhavecausedmanyoftheotheragentdeveloperstoputlesseffortintodevelopingpoliciesforprocurementduringtherestofthegame.SincechangeswillbemadeforTAC-04toreducetheimpactofday0procurement,welookforwardtothe2004competitionasabettertestforDeepMaize’ssteady-stateprocurementpolicy.
TherearemanypossibilitiesforimprovementstoDeepMaize’sprocurementap-proach.Forinstance,someoftheparametersdefiningthereferenceinventorytra-jectory(e.g.baselinelevelandpremiums)weresetsomewhatarbitrarilyandcouldundoubtedlybeimprovedbyadditionaltuning,analysis,orlearningmethods.Ourestimatesofsuppliercapacitycouldalsobeusedmoreeffectivelytotargetsupplierswithavailablecapacityatlowprices,potentiallyimprovingofferacceptanceratesandcomponentprices.Thesesameestimatescouldalsobeusedtoimproveourprojectionsoffuturecomponentconsumptionbyidentifyingtimeswhenproductionwillbeimpossiblebecausekeycomponentsarenotavailableorareveryexpensive.Webelievethattheseandotherimprovementswillbeinterestingavenuesforfurtherresearchonvalue-drivenprocurementinfutureTAC/SCMcompetitions.
ACKNOWLEDGMENTS
WegratefullyacknowledgethehelpofmanypeoplewhomadetheTAC/SCMtour-namentpossibleincludingR.Arunachalam,J.Eriksson,N.Finne,S.Janson,andN.Sadeh.AttheUniversityofMichigan,DeepMaizewasdesignedandimplementedwiththeadditionalhelpofJoshuaEstelle,YevgeniyVorobeychik,MatthewRudary,KevinO’Malley,ThedeLoder,andShih-FenCheng.ThisworkwassupportedinpartbyNSFgrantIIS-0205435.
REFERENCES
Arunachalam,R.,Eriksson,J.,Finne,N.,Janson,S.,andSadeh,N.2003.TheTACsupplychainmanagementgame.Tech.rep.,SwedishInstituteofComputerScience.DraftVersion0.62.
Benisch,M.,Greenwald,A.,Naroditskiy,V.,andTschantz,M.2004.Astochasticprogram-mingapproachtoschedulinginTACSCM.InFifthACMConferenceonElectronicCommerce.NewYork.
Dahlgren,E.2003.PackaTAC:Aconservativetradingagent.M.S.thesis,LundUniversity.Estelle,J.,Vorobeychik,Y.,Wellman,M.P.,Singh,S.,Kiekintveld,C.,andSoni,V.2003.Strategicinteractionsinasupplychaingame.Tech.rep.,UniversityofMichigan.
Keller,P.W.andDuguay,F.-O.2004.RedAgent-winnerofTACSCM2003.SIGecomExchanges4,3.
ACMSIGecomExchanges,Vol.4,No.3,February2004.
18
·
Kiekintveldetal.
Kiekintveld,C.,Wellman,M.P.,Singh,S.,Estelle,J.,Vorobeychik,Y.,Soni,V.,andRudary,M.2004.Distributedfeedbackcontrolfordecisionmakingonsupplychains.InFourteenthInternationalConferenceonAutomatedPlanningandScheduling.Whistler,BC.Pardoe,D.andStone,P.2004.TacTex-03:Asupplychainmanagementagent.SIGecomExchanges4,3.
Sadeh,N.,Arunachalam,R.,Eriksson,J.,Finne,N.,andJanson,S.2003.TAC-03:Asupply-chaintradingcompetition.AIMagazine24,1,92–94.
Schneider,J.G.,Boyan,J.A.,andMoore,A.W.1998.Valuefunctionbasedproductionscheduling.InFifteenthInternationalConferenceonMachineLearning.Madison,WI,522–530.ReceivedJanuary2004;RevisedFebruary2004;AcceptedFebruary2004;
ACMSIGecomExchanges,Vol.4,No.3,February2004.
因篇幅问题不能全部显示,请点此查看更多更全内容