1、如图,在等腰△ACB中,AC=BC=5,AB=8,D为底边AB上一动点(不与点A,B重合),DE⊥AC,DF⊥BC,垂足分别为E,F,则DE+DF= .
2、在边长为2㎝的正方形ABCD中,点Q为BC边的中点,点P为对角线AC上一动点,连接PB、PQ,则△PBQ周长的最小值为____________㎝(结果不取近似值).
3、如图,将边长为1的等边△OAP按图示方式,沿x轴正方向连续翻转2011次,点P依次落在点P1,P2,P3,P4,…,P2007的位置.试写出P1,P3,P50,P2011的坐标.
4、如图,在等腰Rt△ABC中,∠ACB=90°,AC=CB,F是AB
边上的中点,点D、E分别在AC、BC边上运动,且始终保持AD=CE.连接DE、DF、EF. (1)求证:△ADF≌△CEF
(2)试证明△DFE是等腰直角三角形
5、如图,在等边ABC的顶点A、C处各有一只蜗牛,它们同时出发,分别以每分钟1各单位的速度油A向B和由C向A爬行,其中一只蜗牛爬到终点时,另一只也停止运动,经过t分钟后,它们分别爬行到D,E处,请问
(1)在爬行过程中,CD和BE始终相等吗?
(2)若蜗牛沿着AB和CA的延长线爬行,EB与CD交于点Q,其他条件不变,如图(2)所示,,求证:CQE60
(3)如果将原题中“由C向A爬行”改为“沿着BC的延长线爬行,连接DE交AC于F”,其他条件不变,则爬行过程中,DF始终等于EF是否正确
6、如图1,若△ABC和△ADE为等边三角形,M,N分别EB,CD的中点,易证:CD=BE,△AMN是等边三角形. (1)当把△ADE绕A点旋转到图2的位置时,CD=BE是否仍然成立?若成立请证明,若不成立请说明理由; (2)当△ADE绕A点旋转到图3的位置时,△AMN是否还是等边三角形?若是,请给出证明,并求出当AB=2AD时,△ADE与△ABC及△AMN的面积之比;若不是,请说明理由.
图1 图2
7、如图,已知△ABC中,ABAC10厘米,BC8厘米,点D为AB的中点.
(1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动. ①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;
②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等? (2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇? A
D
Q
B C
P
8、如图,在平面直角坐标系中,矩形AOBC在第一象限内,E是边OB上的动点(不包括端点),作∠AEF = 90,使EF交矩形的外角平分线BF于点F,设C(m,n).
(1)若m = n时,如图,求证:EF = AE;
(2)若m≠n时,如图,试问边OB上是否还存在点E,使得EF = AE?若存在,请求出点E的坐标;若不存在,请说明理由.
9.在△ABC中,ABAC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,..使ADAE,DAEBAC,连接CE.
(1)如图1,当点D在线段BC上,如果BAC90°,则BCE 度; (2)设BAC,BCE.
①如图2,当点D在线段BC上移动,则,之间有怎样的数量关系?请说明理由; ②当点D在直线BC上移动,则,之间有怎样的数量关系?请直接写出你的结论.
A
A
E
E
10.如图, 直线l与x轴、y轴分别交于点M ( 8,0 ),点N ( 0,6 ).点P从点N出发,以每秒1个单位长度的速度沿N→O方向运动,点Q从点O出发,以每秒2个单位长度的速度沿O→M的方向运动.已知点P、出发,当点Q到达点M时,P、Q同时
Q两点同时停止运动, 设运动时间为t秒.
(1)设四边形...MNPQ的面积为S,求S关于t的函数关系式,并写出t的取值范围.
与l平行? (2)当t为何值时,PQ
三、本次课后作业:
y N P M x O
l 1、如图,AC为正方形ABCD的一条对角线,点E为DA边延长线上的一点,连接BE,在BE上取一点F,使
BFBC,过点B作BKBE于B,交AC于点K,连接CF,交AB于点H,交BK于点G.
(1)求证:BHBG; (2)求证:BEBGAE
EFA5MDN
1H476B3K8G2C
2、已知:如图,△ABC是边长3cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速移动,它们的速度都是1cm/s,当点P到达点B时,P、Q两点停止运动.设点P的运动时间为t(s),解答下列问题:
(1)当t为何值时,△PBQ是直角三角形? (2)设四边形APQC的面积为y(cm2),求y与t的
关系式;是否存在某一时刻t,使四边形APQC的面积是△ABC面积的三分之二?如果存在,求出相应的t值;不存在,说明理由;
A P
BQC3、已知:等边三角形ABC的边长为4厘米,长为1厘米的线段MN在△ABC的边AB上沿AB方向以1厘米/秒的速度向B点运动(运动开始时,点M与点A重合,点N到达点B时运动终止),过点M、N分别作AB边的垂线,与△ABC的其它边交于P、Q两点,线段MN运动的时间为t秒.
(1)线段MN在运动的过程中,t为何值时,四边形MNQP恰为矩形?并求出该矩形的面积;
(2)线段MN在运动的过程中,四边形MNQP的面积为S,运动的时间为t.求四边形MNQP的面积S随运动时间t变化的函数关系式,并写出自变量t的取值范围.
C
Q
P
P
B
B
Q
N
A
M
N B
Q
C
C
P
A
M N
A M
4、如图,在Rt△ABC中,∠C=90°,AC=12,BC=16,动点P从点A出发沿AC边向点C以每秒3个单位长的速度运动,动点Q从点C出发沿CB边向点B以每秒4个单位长的速度运动.P,Q分别从点A,C同时出发,当其中一点到达端点时,另一点也随之停止运动.在运动过程中,△PCQ关于直线PQ对称的图形是△PDQ.设运动时间为t(秒).
(1)设四边形PCQD的面积为y,求y与t的函数关系式; (2)t为何值时,四边形PQBA是梯形?
(3)是否存在时刻t,使得PD∥AB?若存在,求出t的值;若不存在,请说明理由;
(4)通过观察、画图或折纸等方法,猜想是否存在时刻t,使得PD⊥AB?若存在,请估计t的值在括号中的哪个时间段内(0≤t≤1;1<t≤2;2<t≤3;3<t≤4);若不存在,请简要说明理由.
A
P
D C Q B
5、在ABC中,CRt,AC4cm,BC5cm,点D在BC上,且以CD=3cm,现有两个动点P、Q分别从点A和点B同时出发,其中点P以1cm/s的速度,沿AC向终点C移动;点Q以1.25cm/s的速度沿BC向终点C移动。过点P作PE∥BC交AD于点E,连结EQ。设动点运动时间为x秒。 (1)用含x的代数式表示AE、DE的长度;
(2)当点Q在BD(不包括点B、D)上移动时,设EDQ的面积为y(cm),求y与月份x的函数关系式,并写出自变量x的取值范围;
(3)当x为何值时,EDQ为直角三角形。
6. 如图,在等腰梯形ABCD中,AB∥DC,ADBC5cm,AB=12 cm,CD=6cm , 点P从A开始沿AB边向B以每秒3cm的速度移动,点Q从C开始沿CD边向D以每秒1cm的速度移动,如果点P、Q分别从A、C同时出发,当其中一点到达终点时运动停止。设运动时间为t秒。
2(1)求证:当t=
3时,四边形APQD是平行四边形; 2(2)PQ是否可能平分对角线BD?若能,求出当t为何值时PQ平分BD;若不能,请说明理由; (3)若△DPQ是以PQ为腰的等腰三角形,求t的值。
A D Q C B
P
因篇幅问题不能全部显示,请点此查看更多更全内容