Simulations,andSecularEvolution
LaurenA.MacArthurandSt´ephaneCourteau1
DepartmentofPhysics&Astronomy,UniversityofBritishColumbia,6224Agricultural
Road,Vancouver,BCV6T1Z1
lauren@astro.ubc.ca,courteau@astro.ubc.ca
and
JonA.Holtzman1
DepartmentofAstronomy,NewMexicoStateUniversity,Box30001,Department45000,
LasCruces,NM88003-8001
holtz@astro.nmsu.edu
ABSTRACT
Arobustanalysisofgalaxystructuralparameters,basedonthemodelingofbulgeanddiskbrightnessesintheBVRHbandpasses,ispresentedfor121face-onandmoderatelyinclinedlate-typespirals.Eachsurfacebrightness(SB)profileisdecomposedintoasumofageneralizedS´ersicbulgeandanexponentialdisk.Thereliabilityandlimitationsofourbulge-to-disk(B/D)decompositionsaretestedwithextensivesimulationsofgalaxybrightnessprofiles(1D)andimages(2D).Wehaveusedrepeatobservationstotesttheconsistencyofourdecompositions.
Theaveragesystematicmodelerrorsare<<
∼20%and∼5%forthebulgeanddiskcomponents,respectively.Thefinalsetofgalaxyparametersisstudiedforvari-ationsandcorrelationsinthecontextofprofiletypedifferencesandwavelengthdependences.
GalaxytypesaredividedintothreeclassesaccordingtotheirSBprofileshapes;FreemanType-IandType-II,andathird“Transition”classforgalax-ieswhoseprofileschangefromType-IIintheopticaltoType-Iintheinfrared.Roughly43%,44%,and13%ofTypeI,II,andTransitiongalaxiesrespectively
–2–
compriseoursample.OnlyType-Igalaxies,withtheirfullyexponentialdisks,areadequatelymodeledbyour2-componentdecompositionsandourmainresultsfocusontheseprofiles.WediscusspossibleinterpretationsofFreemanType-IIprofiles.TheS´ersicbulgeshapeparameterfornearbyType-Ilate-typespiralsshowsarangebetweenn=0.1–2but,onaverage,theunderlyingsurfacedensityprofileforthebulgeanddiskofthesegalaxiesisadequatelydescribedbyadouble-exponentialdistribution.Thedistributionofdiskscalelengthsshowsadecreasingtrendwithincreasingwavelength,consistentwithahigherconcentrationofoldstarsordust(orboth)inthecentralregionsrelativetotheouterdisk.Weconfirmacouplingbetweenthebulgeanddiskwithascalelengthratiore/h=0.22±0.09,orhbulge/hdisk=0.13±0.06forlate-typespirals,inagreementwithrecentN-bodysimulationsofdiskformation.Thisratioincreasesfrom∼0.2forlate-typespiralsto∼0.24forearliertypes.Theseobservationsareconsistentwithbulgesoflate-typespiralgalaxiesbeingmoredeeplyembeddedintheirhostdiskthanearlier-typebulges,asdiscussedbyGraham(2001).Bulgesanddiskscanthuspreserveanearlyconstantre/hbutshowagreatrangeofsurfacebrightnessforanygiveneffectiveradius.Thesimilarscalingrelationforearlyandlate-typespiralssuggestscomparableformationand/orevolutionscenariosfordiskgalaxiesofallHubbletypes.InthespiritofCourteau,deJong,&Broeils(1996)butusingournew,moreextensivedatabase,weinterpretthisresultasfurtherevidenceforregulatedbulgeformationbyredistributionofdiskmaterialtothegalaxycenter,inagreementwithmodelsofsecularevolutionofthedisk.Subjectheadings:galaxies:spiral—galaxies:photometry—galaxies:structure—galaxies:formation—galaxies:simulations
1.Introduction
Stellardensitydistributionsprovideimportantconstraintsforbulgeanddiskformationmodels.Historically,astronomershaveembracedther1/4brightness“law”(deVaucouleurs1948)andexponentialbrightnessprofile2(deVaucouleurs1959a;Freeman1970)tomodelthe
–3–
lightdistributionofthegalaxybulgeanddisk,respectively3.DeparturesfromthestandarddeVaucouleursprofileintheinnerlightdistributionofearly-andlate-typespiralshavehoweverbeendemonstratedinanumberofearlystudies(deVaucouleurs1959;vanHouten1961;Burstein1979),includingtheMilkyWay(Kent,Dame,&Fazio1991).Andredakis&Sanders(1994),deJong(1996a),Courteau,deJong,&Broeils(1996),andCarollo(1999)laterusedsmallsamplesofhigh-qualitysurfacebrightness(SB)profilestoestablishtheexponentialprofileasabettermatchtolate-typediskbulges;thusSBprofilesofmostlate-typespiralsarebestmodeledbyadouble-exponentialfittothebulgeanddisk.Abroaderanalysissuggestsarangeofbulgeshapesfromearly-tolate-typespirals(Andredakisetal.1995;deJong1996a;Courteauetal.1996;Graham2001).MostoftheseanalysesrelyonthemodelingofageneralizedsurfacedensityfunctionsuchasthatproposedbyS´ersic(1968);
r
I(r)=I0exp−
1/n
.
(2)
r0
whereµ0(I0)isthecentralsurfacebrightness(intensity),r0isascalingradius,andtheexponent1/nisashapeparameterthatdescribestheamountofcurvatureintheprofile.Forn=1or4onerecoversapureexponentialorthedeVaucouleursr1/4profilerespectively.Collectively,theworksabovesuggestthatthebulgeshapeparameterncorrelateswithabsoluteluminosityandhalf-lightradius,suchthatbigger,brightersystemshavelargervaluesofn.ThisresultwasextendedtobrightestclustergalaxiesbyGrahametal.(1996).Courteauetal.(1996)alsodemonstratedatightcorrelationbetweenthebulgeanddiskexponentialscalelengths,forallspiraltypes,withhb/hd=0.1±0.05(whereh=r0andn=1inEq.1).Theexponentialnatureoflate-typegalaxybulgesandthecorrelationbetweenbulgeanddiskscalelengthswasinterpretedbyCourteauetal.(1996)asevidenceforregulatedbulgeformationbyredistributionofdiskmaterialtothegalaxycenterbyabar-likeperturbation.Wewillreturntothisimportantconstraintforsecularevolutionmodelsin§5.3.
–4–
Thisstudyfocusesonthedevelopmentofareliablesetofobservablesandconstraintsforstructureformationmodels.AnimportantgoalistomeasuretherangeoftheS´ersicnparameterforvirializeddisksystems.Theanalysesdescribedabovearereproducedandexpandeduponwiththelargestmulti-bandsurveyofitskindtodateandaclearerunder-standingofmodellimitationsthanpreviouslyattained.Weaimtocharacterizeandquantifytheintrinsicstructuralpropertiesofthebulgeanddiskandtheextentoftheirvariationwithwavelength.ThesecharacterizationsaremadethroughreliablemodelingofbulgeanddiskparametersfromSBprofiledecompositions.Multi-wavelengthinformationalsopro-videsinsightaboutstructuralvariationswithinandamonggalaxiesduetodustandstellarpopulationeffects.Whilesomeoftheseissueshavebeenaddressedbefore,thereremainsanumberofsignificantmeasurementuncertaintiesandtechnicallimitationswhichwenowinvestigatethoroughly.
Thispaperisorganizedasfollows:abriefdescriptionofthedatabaseisgivenin§2andin§3wediscussourB/Ddecompositionalgorithms(1Dand2D)andthesimulationstotestthereliabilityofourtechnique.Forthereadersinterestedmostlyinfinalprofiledecompositionsandresults,asummaryofthesimulationresultsandguidelinesisgivenin§3.4.ActualB/DdecompositionsofgalaxySBprofilesarepresentedin§4,followedbyadiscussionandinterpretationoftheresultsintermsofsecularevolutionmodelsin§5.AdiscussiononthenatureofFreemanType-IIprofilesisalsopresentedin§5.Weconcludewithfuturedirectionsin§6.Twoappendicespresent(A)adiscussionofthefunctionalformfortheS´ersiccoefficientbn,and(B)decompositionresultsforourType-Iprofiles.
2.TheData
Ourstructuralanalysisofgalaxyluminosityprofilesisbasedonthecatalogofmulti-bandimagesoflate-typespiralgalaxiesbyCourteau,Holtzman,&MacArthur(2002;hereafterPaperII).Itconsistsofover1000deepB,V,R,andHimagesof322nearbybrightlate-typespiralgalaxies.Thedatawerecollectedbetween1992and1996atLowellObservatoryandKittPeakNationalObservatory(KPNO).Afulldescriptionofthesampleselection,observations,andreductionsispresentedinPaperII.Asummaryisgivenbelow.
ThegalaxysamplewasselectedfromtheUppsalaGeneralCatalogue(UGC,Nilson1973)withthefollowingcriteria:
•PredominentlylateHubbletypes•ZwickymagnitudemB≤15.5
•BlueGalacticextinctionAB=4×E(B−V)≤0m.5(Burstein&Heiles1984)
–5–
•Inclinationbinscoveringface-on(i≤6◦),intermediate(50◦Thiscatalogisnotcompleteinanysenseofthe(muchabused)term.ThediameterlimitwasconstrainedprimarilybythefieldofviewoftheinfraredcamerasinuseatKPNO(IRIMandCOB)andLowellObservatory(OSIRIS)in1992–1996andtherequirementforblankareasinthefieldofviewforskysubtraction.Additionally,peculiarandinteractinggalaxies(e.g.novisibletidaltails)wereexcludedtoensurethatthesampleconsistedonlyofisolateddiskdominatedgalaxies.Barredgalaxies,asclassifiedintheUGC,werenotexcludedpersebutonlyahandfulwereobserved.Forthepresentanalysis,weuseasub-sampleof121galaxieswithface-onandintermediateinclinationsonly,foratotalof523images4.ThedistributionofHubbletypesinourreducedsampleis:2Sab,26Sb,19Sbc,38Sc,25Scd,11Sd.
AlldistancesarecorrectedtothereferenceframeoftheLocalStandardofRest(Courteau&vandenBergh1999),andweuseH0=70kmsec-1Mpc-1.Thesurveyeffectivedepthiscz∼5500kms−1or80Mpc.
2.1.ObservationsandBasicReductions
AllopticalBVRimageswereobtainedfrom1992to1994atLowellObservatorywithaTI800×800chip(scale=0′′.5/pix)onthePerkins72′′telescope.TheinfraredH-bandimageswereacquiredfrom1993to1995atKPNOwiththe2-meterand4-metertelescopesequippedwitheitheraHgCdTe(IRIM)oranInSb(COB)256×256array(1′′.09/pixand0′′.5/pixrespectively),andfrom1995to1996withtheOSIRISimager(1′′.49/pix)mountedontheLowell72′′telescope.Theexposuretimeswere:300sinR,400sinV,1500sinB,andon-targetintegrationof1200sinH.Landolt(1992)standardscoveringawiderangeofairmassesandcolorswereobservedeachnightatLowellObservatory,givingaphotometricaccuracyof∼2%fortheopticalpassbands.UKIRTstandards(Guarnieri,Dixon,&Longmore1991)observedeachnightyieldedH-bandphotometriccalibrationsgoodto∼3%.Starsanddefectswereeditedfromtheimagespriortofurtheranalysis.
Thetypicalseeingfull-widthathalf-maximum(FWHM)atLowellandKPNOwas2′′.0withtypicalstandarddeviationsof∼20%(optical)and∼35%(IR)perimage.These
–6–
measurementswerecomputedasthemeanoftheFWHMsofallnon-saturatedstarsmeasuredautomaticallyoneachimageframe;typically5to40measurementsperframewereused.Wemeasuremeanskylevels(fora5–6dayoldmoon)ofB=21.9±0.8,V=21.2±0.5,R=20.6±0.5,andH=14.1±1.2magarcsec−2.Typicalsystematicerrorsintheskymeasurement,computedfrom4or5skyboxessuitablylocatedbetweenthegalaxyandtheedgeoftheframe,are0.5−1.0%intheopticaland0.005−0.01%intheIR.
Azimuthally-averagedSBprofileswereextractedforallthegalaxiesusingellipsefittingwithafixedcenter.Toensureahomogeneouscomputationofstructuralparametersandcolorgradients,weusetheisophotalmapsfromtheR-bandtodeterminetheSBprofilesinBVH.Eventhoughdusteffectscanstillplayaroleat7000˚A,theR-bandwasadoptedforourisophotaltemplatesasithasthemoststableskyanddeepestprofiles.Weallowedavariablepositionangleandellipticityateachisophote,butacomparisonwithSBprofilesextractedusingconcentricisophotalfitsdemonstratedthatourresultsdonotdependonthefittingtechnique.FurtherinformationaboutprofileextractionandCCDsurfacephotometrycanbefoundinCourteau(1996a)andPaperII.WetraceSBprofilesto∼26magarcsec−2inopticalbandsand∼22magarcsec−2atH-band.Theselevelscorrespondtoasurfacebrightnesserrorof∼0.12magarcsec−2.
2.2.SurfaceBrightnessCorrections
Theobservedsurfacebrightnessofagalaxycanchangewhenviewedatdifferentinclina-tionangles,dependingonthedistributionofagalaxy’sinterstellarmediumanditsopacity.SurfacebrightnessesarealsoaffectedbyGalacticforegroundextinctionandredshiftdim-ming.Weaccountforthelattereffectsbutdeferanytreatmentofinternalextinction,whichvarygreatlyfromauthortoauthor,toPaperII.Ourconclusionsdonotdependontheexactvaluesofthecentralandeffectivesurfacebrightnessesofgalaxies.
WecorrectforGalacticforegroundextinctionusingthereddeningvalues,Aλ,ofSchlegeletal.(1998)andassuminganRV=3.1extinctioncurve(e.g.Cardellietal.1989),
λ
µλc,Gal=µobs−Aλ.
(3)
Wecorrectsurfacebrightnessesforthe(1+z)3cosmologicalredshiftdimming(perunit
frequencyinterval)as
λ
µλ(4)c,z=µobs−7.5log(1+z).
–7–
Thefinalcorrectiontotheobservedsurfacebrightnessesisthus,
λ
µλc=µobs−Aλ−7.5log(1+z).
(5)
ExamplesofthetypesandextentoftheSBprofilesfortypicallate-typespiralgalaxiesin
oursampleareshowninFig.1.ForType-Idisks(Freeman1970),theinnerprofilealwaysliesabovethesurfacebrightnessoftheinwardextrapolationoftheouterdisk,whereasType-IIsystemshaveaportionoftheirbrightnessprofileslyingbelowtheinwarddiskextrapolation.WedefineaTransitioncaseforluminosityprofilesthatchangefromType-IIatopticalwavelengthstoType-Iintheinfrared.ManygalaxiesclassifiedasType-IIshowaweakeningoftheinnerprofiledipatlongerwavelengthsand,inthissensethereisnocleardistinctionbetweentheType-IIandTransitiongalaxies.LikelyinterpretationsforType-IIprofilesarediscussedin§refsubsec:typeII.
3.SimulationsofBulge-to-DiskDecompositions
Inordertomeasuregalaxystructuralparameters,wehavedevelopedtwoindependentalgorithmstodecomposethegalaxy1Dand2Dlightdistributionsintobulgeanddiskcom-ponents.TheseprogramsallowforageneralizedS´ersicbulge,anexponentialdisk,andacentralbarfor2Dimages.Thereareseveralissuesinvolvedwithaccuratedecompositions,particularlywiththemeasurementofbulgeparameters,including;thesensitivityoffinalresultstostartingguesses,effectsofstatisticalandsystematicerrorsinskybrightnessandseeingestimates,choiceoffitbaseline,etc.Weexploretheseingreatdetailbelowusingboth1Dand2Danalysestodeterminetherobustnessofourcodesandthereliabilityofourfinalsolutions.Becauseprojectedsurfacebrightnessprofilescontainfewerdatapointsthanfull2Dimages,wecancreate1Dsimulationsfasterthan2Dmodels.Thusourmostextensivetestsrelyon1Dsimulations,whichareshowntobefullyconsistentwith2Dsimulationswhenconsideringaxisymmetricfeatures.
3.1.1Dand2DAlgorithms
Ourbrightnessprofile(1D)bulge-to-disk(B/D)decompositionalgorithmwasinitiallydevelopedbyBroeils&Courteau(1997)andsubsequentlyimprovedbyLM.Thisprogramreduces1Dprojectedgalaxyluminosityprofilesintobulgeanddiskcomponentssimultane-ouslyusinganon-linearLevenberg-Marquardtleast-squares(NLLS;see§15.5inPressetal.(1992))fittothelogarithmicintensities(i.e.magnitudeunits).RandomSBerrorsare
–8–
accountedforinthe(data−model)minimization,whereassystematicerrorssuchasuncer-taintiesintheskybackgroundanddeterminationoftheimagemeanPSFareaccountedforseparatelyinaseriesofexperimentsdesignedtocalibratetheireffects.Seeingeffectsinourmodelgalaxiesareaccountedforbyconvolvingthetheoreticalbulge-disksurfacebrightnessprofilesandimageswitharadiallysymmetricGaussianPointSpreadFunction(PSF),oftheform∞
2222
Is(r)=σ−2e−r/2σItotal(x)I0(xr/σ2)e−x/2σxdx(6)
0
whereItotal(x)istheintrinsicsurfacebrightnessprofile,σisthedispersionoftheGaussian
PSFandI0isthezero-ordermodifiedBesselfunctionofthefirstkind(seealsoTrujilloetal.(2001)forastudyoftheMoffatPSF.)
The2DdecompositionprogramisbasedonthesameNLLStechniqueasabovebutusesthefull2Dimageinintensityunitsinsteadofalogarithmicradialsurfacebrightnessprofile.Whilecomputationallymoreintensivethanits1Danalogue,the2Ddecompositionshouldyieldmorephysicallymeaningfulresultssincetheazimuthalinformationislostin1Dprofiles.Byun&Freeman(1995),deJong(1996a),andSimardetal.(2002)havediscussedthemeritsofthe2Dapproach,suchasgreaterabilitytorecovertrueparameters(basedonsimulations),andthepotentialtomodelnon-axisymmetricfeaturessuchasbars,rings,andspiralarms.Theneedfortheimplementationandtestingofarobust2DB/Ddecompositionpackageisthusobvious,butwefindthat1DdecompositionscomparefavorablyforreliabilityandpredictivepowerprovidedhighS/N1Dradialprofilesareused.Notethatneither1Dnor2Ddecompositionsareimpervioustodustextinctioneffects.ExtinctioneffectsarelessenedatH-band,butcanstillbesignificantindiskbulgesandspiralarms.Aproperrecoveryofthetruestellardensityprofilewouldrequireafull3Dradiationtransfertreatment,andsuchananalysisisbeyondthescopeofthiswork.
3.2.Methodology
Afundamentalaspectofprofiledecompositionsisthechoiceoffittingfunctions.Thedisklightismodeledwiththeusualexponentialfunction,
r
Id(r)=I0exp−
h
(8)
–9–
whereµ0≡−2.5logI0andharethediskcentralsurfacebrightness(CSB)andscalelengthrespectively,andristhegalactocentricradiusmeasuredalongthemajoraxis.Inthe2Ddecompositions,thecomputationoftheradiusateachpixelrequirestwoadditionalparam-eters:thepositionangle(PA)ofthediskmajoraxisontheskyandthediskellipticity,ε=1−b/a,whereaandbarethemajorandminoraxesofthediskrespectively).TotestfortheshapeofthebulgeluminosityprofilesweadoptthegeneralizedformulationofS´ersic(Eqs.1&2).
IthasbecomecustomarytoexpressthediskparametersintermsofscalelengthandCSB(handµ0),whilethebulgeparametersareexpressedintermsofeffectiveparameters(reandµe).Weadoptthisformalism,thusparameterswithsubscripterefertothebulge.Eq.1canbere-writtenas:
r
Ib(r)=Ieexp−bn
re
whereµeistheeffectivesurfacebrightness.
1/n
−1
(11)
ItistrivialtoconvertfromEq.2toEq.11bynotingthat
re=(bn)nr0
µe=µ0+2.5log(e)bn.
Eq.10impliesthat
Γ(2n)=2γ(2n,bn)
(14)
whereΓ(a)isthegammafunctionandγ(a,x)istheincompletegammafunction.Unfor-tunately,Eq.14cannotbesolvedanalyticallyforbn.Variousnumericalapproximations
(12)(13)
–10–
havebeenbeengivenintheliterature(Caonetal.1993;Graham&Prieto1999;Ciotti&Bertin1999;Khosroshahi,Wadadekar,&Kembhavi2000;M¨ollenhoff&Heidt2001).Oneoftenencounterstheapproximationbn≈2n−0.32,validsupposedlyforallvaluesofn(sic).Khosroshahietal.(2000)contendthatthisapproximationisaccuratetoonepartin105,witharangeofvalidityonnunspecified.However,becausethegammafunctiondivergesneartheorigin,mostutilizedapproximationsareinaccurateforvaluesoftheS´ersicexpo-nentn≤1.Differencesbetweennumericalsolutionsforbn(Eq.14)andcommonlyadoptedapproximationscanyieldbrightnessdifferencesgreaterthan0.1magarcsec−2forn1.AswewishtotestforbulgeswithS´ersicnparametersmallerthan1,wehaveadoptedtheasymptoticexpansionofCiotti&Bertin(1999)toO(n−5)forn>0.36.Forn≤0.36thissolutiondivergesandinsteadweuseapolynomialexpression(4thorder)accuratetoonepartin103.Wecomparedifferentnumericalsolutionsforbn(Fig.23)andpresentouradoptedfunctionalforminAppendixA.
AnillustrationofprofileshapesfordifferentvaluesoftheS´ersicnparameterisshowninFig.2.Thetoppanelshowsprofileswithµe=21magarcsec−2andre=3′′.5forvaluesofnintherange0.2 Ofpotentialrelevancetothestudyofgalaxystructureistherelativelightfractioncontributedbythebulgeanddisk.Thisisexpressedintermsofabulge-to-diskluminosityratio,B/D,derivedbyintegratingthebulgeanddiskluminosityprofilestoinfinity.Foraface-onS´ersicprofilethetotalextrapolatedluminosityisgivenby Lb= ∞ Ib(r)2πrdr= 2bn 2πIereenΓ(2n) 0 nb2n r e Io .(17) –11– Eqs.15&16shouldbemultipliedbythefactor(b/a)whenconsideringprojectionsontheplaneofthesky.OnemayuseEq.17inageneralsense,independentofprojection,undertheassumptionthatthebulgeanddiskdensitydistributionshavesimilaraxesratio(nearlytrueforlate-typegalaxies).AweaknessofB/Dratiosforsystematiccomparisonsofgalaxylightprofilesisitsmodeldependenceandthepotentialcovariancesbetweensomeofthemodelparameters.ConsiderFig.2(top)fortherelativelightfractionscontributedbyprofilesofdifferentnvalues,normalizedton=1.Theintegratedbulgelightincreasessteadilyasafunctionofn,forgivenvaluesofreandµe.Thus,theadoptednvalueinabulge-to-diskdecompositionhasastronginfluenceonthecomputedB/Dratio.Additionally,sincelargernprofilescontributelightouttolarger,thecombinationofahighnandalowµe(brightr1/4bulge)couldtakeawaylightfromtheouterdiskandartificiallyboosttheB/Dratio.Adiscussiononnon-parametricstatistics,suchasconcentrationindices(Kent1985;Courteau1996a;Graham2001)whichalleviatemodeldependences,ispresentedinPaperII. Wemodelthetotalgalaxyluminosityprofileasasumofbulge+diskcomponents: Itot(r)=Ib(r)+Id(r). (18) ProfilesmearingbyatmosphericturbulenceisaccountedforinB/Ddecompositionsbycon-volvingEq.18withaGaussianPSFoftheformofEq.6. SimilarB/DanalyseshavealsoconsideredadditionaltermsforaGaussianbar(deJong1996a),alensorring(Prietoetal.2001),spiralarms,andstellardiskswithinnerand/oroutertruncations(Kormendy1997;Baggett,Baggett,&Anderson1998).WerestrictourchoiceoffittingfunctionstoaS´ersicbulgeandanon-truncatedexponentialdiskforanumberofreasons.Wefindnoprominentbarsinoursampleandmostourdiskprofilesarefairlylinear(inmagnitudespace).Azimuthalaveragingfor1Dprofilessmoothesoutspiralarmfeatures(toadifferentextentdependingonwhetherthepositionanglewasfixedorallowedtovaryintheprofileextraction.Removalofspiralarmsignaturesfromthelightprofilesorimageswouldrequiremoretimeandeffortthaniswarrantedbyouranalysisatthisstage.)Wedonotconsiderasharpinnerdisktruncationforanumberofreasons:(i)unsharpmaskingtechniquesrevealspiralstructurefromtheinnerdiskintothegalaxycenter(Courteau1992,1996b;Elmegreen,Elmegreen,&Eberwein2001);(ii)usingHSTimagesofinnerdisks,Carollo(1999)alsofindsevidenceforinnerspiralstructureandnuclearstarclustersinthecentersofearly-tointermediate-typespiralgalaxies;(iii)allcomponentsoftheGalaxyhavetheirpeaksurfacebrightnessesinthecenter(e.g.Wyse1999).Thus,atleastsomeevidencesuggeststhatspiraldisksreachinallthewaytothecenteroflate-typesystems.Aloweringofthediskcentralsurfacedensitymayoccurasstarsgetheatedupintoabulgebytheactionofabar-likeinstability.Anexponentialprofilewithacoremay –12– thusbeareasonabledescriptionofType-IISBprofiles.Wedonotconsiderthisapproachhere,butpointoutthatresolvedB/Dkinematicsofnearbygalaxieswouldprovideaclearindicationwhetherstellarpopulationshavebeenstronglydepletedand/orsystematicallyscatteredverticallyintoabulge.Someofourgalaxiesshowouterdisktruncation(e.g.Fig.13),butsee§4.3.2. Thebest-fitparametersofthe(data−model)comparisonarethosewhichminimizethereducedchi-squaremeritfunction,describedinintensityunitsas χ2ν= 1 σi 2 (19) whereNisthenumberofdatapointsused,Misthenumberfreeparameters(i.e.N-M= ν≡DegreesofFreedom),andσiisthestatisticalintensityerrorateachpixel(2D)orsurfacebrightnesslevel(1D).Fromhereontheνsubscriptwillbeomittedandtheχ2variablereferstoaχ2perdegreeoffreedom(unlessotherwisespecified). Theglobalχ2ofintensitiesisclearlydominatedbythecontributionfromthedisk,virtuallyirrespectiveofthefittedbulge.Thiseffectwouldbeaccentuatedingalaxieswithprominentfeatures,suchasspiralarms,rings,orlenses,whicharenotaccountedforinourpureexponentialdiskmodels.CasesarefoundwhereB/Ddecompositionswithsignificantlydifferentbulgeexponentnvaluesforagivenprofilehavenearlythesameglobalχ2value(seeFigs.8&9).Thus,inordertorefineourparametersearchforthebest-fitbulgeanddiskmodel,wecomputeaseparate,inner,χ2statisticouttotwicetheradiuswherethebulgeanddiskcontributeequallytothetotalluminosityofthegalaxy(rb=d≡2r(Ib=Id)).Welabelthisstatisticasχ2in(seeGraham2001forasimilarformulation).Forcaseswherethebulgesaresosmallthattheynevertrulydominatethelightprofile(i.e.rb=disundefined),wecomputetheχ2inouttotheradiusatwhichν=1. 3.3.ReliabilityoftheDecompositionResults Thissectiondescribesextensivetestingofourbulge-to-diskdecompositionprograms.ArtificialSBprofilesandimageswerecreatedwithawiderangeofbulgeprofileshapesandexponentialdisksincludingrealisticnoiseandseeingeffects.Realgalaxiesareclearlymorecomplicatedthanthesumoftwoidealizedmathematicalfunctions,butthesetestsprovideareasonablebaseforaglobalunderstandingofthereliabilityandlimitationsofB/Ddecompositionalgorithms.ThemockcatalogofSBprofilesandimageswillbeusedtoaddressthefollowingquestions: –13– •Howreliableandmeaningfularethebulge-to-diskdecompositionsandfittedparame-ters? •Howcrucialareinitialestimates?Aremodelfitsalwaysconvergingtothelowestχ2minimum? •Howdoseeingeffectsandskysubtractionerrorsaffectthedecompositions,andcantheybeproperlyaccountedfor? •Arethesmallbulgesinlate-typediskgalaxiessufficientlyresolvedtopermitareliablesolutionoftheS´ersicnparameterasafreeparameter?Theliteratureaboundswithinvestigationsofprofilefittingalgorithmsbasedonartifi-cialdata,suchasSchombert&Bothun(1987;hereafterSB87)whoperformeddouble-blindexperimentswhereoneoftheauthorscreatedmockluminosityprofilesandtheotherindepen-dentlyfittedthedata.TheSBprofilescombinedadeVaucouleursbulgeandanexponentialdisk.Photonnoise,atalevelmatchingtypicalblueCCDperformances,andasystematic0.5–3.0%erroroftheskybackgroundwereaddedtotheprofiles.SB87foundthatthesimul-taneousfittingofdiskandbulgeusingstandardNLLStechniquescouldreproducetheinputparameterstowithin10–20%incaseswheregalaxyprofilescanbedecomposedperfectlyasthesumofabulgeanddisk(whichfailsforType-IIprofiles.)SB87claimthataskyestimateuncertaintyofupto3%doesnotaffecttheirderivedparameters,butwefindthatskyerrorsassmallas1%canhaveasignificanteffectontheshapeoftheouterdiskprofileandthederivedbulgeanddiskparameters(see§3.3.5below).SB87didnotconsiderotherfittingfunctionsbutrecognizedthatbulgesmaynotbeadequatelydescribedbythedeVau-couleursr1/4function.Andredakis&Sanders(1994)laterexaminedtheinadequacyofther1/4functionalformforthebulge(1D)profile,andfirstestablishedthedouble-exponentialnatureoflate-typespirals. 2DB/Ddecompositiontechniques,whichexploitthefullgalaxyimage,werealsode-velopedandtestedinsimilarfashioninthemid-nineties(Byun&Freeman1995;deJong1996a).DeJongperformedextensivetestswithmockgalaxiesmodeledaspureexponen-tialbulgesanddisks,exploringtheeffectsoferrorsinthemeasuredobservablesincludingtheseeingFWHM,skybackgroundlevel,minorovermajoraxisratio,b/a,andpositionangle,PA.Theseobservableswereusedasfixedinputparameterstothefittingroutine,anddeJongcalibratedtheeffectofmeasurementerroronthedeterminedparametersbydecomposingtheartificialgalaxiesusingerroneousvaluesforeachobservable.Heconcludedthat:errorsinµ0arepredominantlycausedbyskysubtractionerrorsandcanbeaslargeas0.1magarcsec−2;errorsinhcanreach10%andaredominatedbyskybackgroundandellipticitymeasurementerrors;bulgeparametererrors,oforder20%,arecontrolledbythe –14– B/Dsizeandbrightnessratios.Brightbulgesaremostaffectedbyseeingerrors,andfainterbulgescanalsobeaffectedbyskybackgrounderrors. OurowninvestigationreachessimilarconclusionsandfurtherextendsdeJong’ssim-ulations.Wetestfortherobustnessofthefittingprocedureandaccuracyofthederivedparameterswithvariousvaluesofthefitinitialestimates,seeingFWHM,skyvalue,andtheirerrors,and–unlikedeJong(1996a)–wemodelthebulgewithageneralizedS´ersicprofile.ThesesimulationswereinitiatedbyBroeils&Courteau(1997)butareextendedhereinmuchgreaterdetail,especiallywithrespecttothedeterminationofthebulgeshapeparametern. 3.3.1.SimulatedProfilesandImages OurtestsusealargesetofartificialSBprofilesandimageswhichspanawiderangeofthebulge,disk,andseeingparameters.Themathematicalformsofthebulgeanddiskcomponentsarethosediscussedin§3.1.NoisewasaddedtothemodelprofilesandimagesfromaGaussiandistributionwithdeviationrepresentativeofthestandardbrightnesserrorsofourluminosityprofilesatagivensurfacebrightnesslevel(seeCourteau1996a,Fig.9;PaperII). OnehundredSBprofilesandfourtyimageswithrealisticnoisewerecreatedforeachbulge,disk,andseeingcombination.Mostofthesimulatedprofilesandimageshadthesamediskparameters, µ0=20magarcsec−2, h=12′′, whicharerepresentativeofatypicalgalaxyinoursample6.Forexponential(n=1)bulges,thestructuralparameterswereselectedfrom µe=16,17,...,22magarcsec−2, re=0.1,0.2,...,3′′.0 correspondingtoB/Dratiosrangingfrom0to5andB/Tfrom0to0.8(seeEq.17). Allprofilesandimageswereconvolvedwithaseeingdiskof –15– FWHM=1.0,1.5,...,3′′.0. Ourmodelsspanthefullrangeofparameterstypicallyfoundinlate-typebulges(e.g.de Jong(1996b);Courteau(1996a);Broeils&Courteau(1997))andtheseeingvaluesmatchtheexpectedrangeatLowellObservatoryandKPNO(see§2). WealsoexploredthefollowingrangeofS´ersicnvalues n=0.2,0.4,...,4.0 forthesetofcombinationswithre=0.8,1.5,and2′′.5,µe=18,20,and22magarcsec−2andforseeingFWHMsof1.5,2.0and2′′.5.HerethecorrespondingB/Dratiosrangefromabout0to1,andB/Tfrom0to0.5.Wealsosimulatedthefullrangeofre,FWHM,andµe=18,20,22,and24magarcsec−2forn=0.2andn=4.0foratestregardingtheinitialestimates(see§4.2). Atotalofabout223,000artificialSBprofilesand16,200imageswerecreatedandmodeled.Themockprofileswereallsampledat0′′.5/pixeltomatchthedata.The1Dand2Ddecompositionsoftheartificialprofilesandimagesweredeemedsatis-factoryiftheymetthefollowing(ratherliberal)criteria:•solutionfoundwithin100iterations•0 Foreachsetofparameters,werequirethatatleasttwo-thirdsofthe100(40)simulatedprofile(image)decompositionspassthesecriteriatobeincludedintheanalysis.The2Dtestswerenotdevelopedasfullyduetoprohibitivecomputingtimes.Thusourtestsrelymoreheavilyonthe1Dtechnique,butwehaveconfirmedthattheresultsfrombothtechniquescorroborateeachother. –16– 3.3.2.DiskInitialEstimates NLLSalgorithmsrequireinitialestimatesasinputparameters,andwemustverifywhetherourfinalsolutionsaresensitivetoourinitialguesses.Differentinitialestimatesmayyielddifferentsolutionswithcomparableχ2valuesespeciallyifthetopologyoftheχ2distributionisnon-trivialorshallow(e.g.Schombert&Bothun1987;deJong1996a).Oursimulationsconfirmtherobustnessofouralgorithmstoawiderangeofinitialdiskparameterestimates.Theresultsareslightlymoresensitiveforlargevaluesofn,butingeneralthediskparameterswereperfectlyrecoveredindependentoftheinitialguesses.Onemuststillcautionthatifthebulgeisfitwiththewrongn,thefitteddiskparameterswilldifferfromtheirintrinsicvalues,eveniftheinitialestimatesweregood.Fig.3showstherelativefiterrorforh,∆h,where hfit(mean)−hmodel ∆h≡ –17– Thetestsforthen=1casedemonstratedthatbulgeparameterinitialestimatesarenotimportantinboththe1Dand2Ddecompositions,aslongasre0.3∗FWHM.Belowthislimitinitialestimatesaremoreimportant;errorsonrecanexceed50%anderrorsofupto∆µe±0.3magarcsec−2canoccur.Inthen=0.2casetheparameterrecoveryislargelyindependentoftheseeingFWHM,asexpectedforprofilesthatareflatinthecenter.Givenincorrectinitialguesses,recoveredparametersforprofileswithre1′′.0canstillbetrusted,butforsmallerbulgesthealgorithmistrappedinalocalminimumandtheoutputvalueisnearlythesameastheinput,e.g.a±25(50)%inputerroryieldsa±25(50)%outputerror.Forn=4.0profiles,theparameterrecoveryisstronglydependentontheseeingFWHMsuchthatdecompositionresultsforprofileswithre0.7∗FWHMcannotbetrusted.Hereagaininputandoutputerrorsareapproximatelyequal.Moreover,evenwithcorrectinitialestimates,themodelparametersarenotperfectlyrecoveredforprofileswithre1′′.0.Wehaveinterpolatedtheseresultsfordifferentvaluesofnanddefineaparameterspaceforwhichoursolutionsarenotaffectedbythechoiceofinitialestimates: re(0.3)1/n∗FWHM and re −0.75n+1.150.2n+0.2 forn≤1.0forn≥1.0 Thecorrespondingresultsforthe2Ddecompositionalgorithmcloselymatchthosefromthe1Dtests. 3.3.4.SeeingEffects TheeffectofanuncertaintyintheseeingFWHMmeasurementonthemodelparameters(n,re,µe,h,andµ0)mustbeaccountedforinoursimulations.Wefiteachmodelusingnotonlythenominalseeingvalue,butwealsovariedtheseeingFWHMbytypicalseeingmeasurementerrors(1σ;∼15−20%foroptical,∼35%forinfrared;seePaperII).Figs.4&5showtheeffectofanincorrectseeingestimateonthefittedreforthe1Dand2Dalgorithmsrespectively.Plottedaretherelativefiterroronre,∆re,where ∆re≡ re,fit(mean)−re,model –18– bulgeparametersandforallvaluesoftheseeingFWHMtested.However,evenmoderateseeinguncertaintiescanseverelyaffectbulgeparametersdependingonthesizeofthebulgerelativetotheseeingFWHM.Iftheseeingwidthisunder(over)-estimatedreissystematicallyover(under)-estimated,worseningforsmallerandfainterbulgesandlargerseeingvalues.Similartrendsareseenforµe.OurtestsshowthatthefiterrorscanbesignificantlylargeriftheseeingFWHMisover-estimatedthanifitisunder-estimated.Asaroughruleofthumb,forre≃FWHMandaseeingmeasurementuncertaintyatthe35%(15%)level,thebulgerecanbetrustedtowithin10–25%(0–10%),andµetowithin±0.1–0.4(0–0.2)magarcsec−2,thelowerendoftherangeapplyingtothebrightestbulgesandincreasingtowardstheupperendforthefainterbulges.Forre≃FWHM+1theerrorsimprovetowithin0–15%(0–10%)forre,and±0.0–0.2(0.0–0.05)magarcsec−2forµe. Thereisnoappreciableeffectduetoseeingonthediskparameters(lessthan1%)exceptfortheworstcaseofaFWHMof3′′.0anda35%seeingover-estimate.Inallothercases,thediskparametersarevirtuallyunaffectedbyseeing,asthesizeofthediskismuchlargerthantheseeingprofile.However,itisofparamountimportancetouseaccurateseeingestimatesandrealisticseeingerrorsinordertosamplethetruerangeofbulgeparametersinB/Ddecompositions. 3.3.5.SkyUncertaintyEffects Wenowtestfortheeffectsofanimproperskysubtractiononthedecompositions.ThetremendoussensitivityofB/Ddecompositionandscalelengthdeterminationstoskyerrorshasbeenhighlightedbefore(Courteau1992;deJong1996a).Hereweaimtoprovideafirmquantitativeassessmentofsucherrors.Were-modelthesamesimulatedprofilesasintheprevioussectionbutusingskyvaluesthatare±1%ofthenominalskylevel(typicalerrorintheopticalpassbands),andusingatypicalopticalskybrightnessof21magarcsec−27.Sincebulgebrightnessesaretypicallygreaterthantheskylevel,atleastatopticalwavelengths,onemightexpectbulgeparameterstobesomewhatinsensitivetoskysubtractionerrors.However,theouterdiskisverysensitivetoskysubtractionerrorsandamodifieddiskultimatelyaffectsbulgestructureduetotheircoupling.Quantitatively,ourtestsshowthatiftheskyisover-orunder-estimatedby1%,theerroronthediskscalelength,∆h,willbeoforder5–15%andthediskCSB,∆µ0,willbe±0.1–0.25magarcsec−2.Thesedispersionsholdforthefullrangeofbulgebrightnessesexceptthetwofaintestbulgeswhichareoneand –19– twomagnitudesfainterthanthesky;thesehaderrorsinexcessof50%.Theerrorrangesarecontrolledbytherelativesizesofthebulgeanddisksuchthatthediskparametererrorsincreaseslightlyfromsmallertolargerbulges.Thisissimplybecausealargerbulgeweakenstheimportanceofthediskinthecentralparts,thusgivingmoreweighttothesky-sensitiveouterdisk. Theerrorsonthebulgeparametersarenegligibleforbulgeswith(µsky−µe)>1magarcsec−2fortheentirerangeofreandseeingFWHMs,butincreaseupto∆re≥15%and|∆µe|≥0.1magarcsec−2(increasingasthebulgegetssmallerandasseeingconditionsdegrade)forbulgeswith(µsky−µe)<1magarcsec−2.Inotherwords,ifthebulgeeffectivesurfacebrightnessislessthanonemagnitudegreaterthantheskybrightness,thebulgeparameterswillbestronglyaffectedbyskysubtractionerrors.Thiseffectisoftenneglectedinstudiesofbulge/diskstructure. Thebulgeanddiskparametersaremostaffectedforthecaseofanunder-subtractedsky.Thisislargelyduetoamagnitudethresholdof26.5magarcsec−2inourdecompositionalgorithm.Thedataaretoonoisybelowthisvalue(PaperII)andweexcludethemfromthefits.Thisthresholdprovidessomeprotectionagainstover-subtractedskiesinthemea-surementofthediskscalelength.Similartestswereperformedwithour2Ddecompositionalgorithmwhichconfirm,onceagain,theresultsabove. 3.3.6.S´ersicnTests Anumberofrecentstudieshavedescribedthevariationofbulgeshapesasafunction ofHubbletype(Andredakisetal.1995;Moriondo,Giovanardi,&Hunt1998;Khosroshahietal.2000;M¨ollenhoff&Heidt2001),goingsofarassuggestingthatprecisevaluesofn(i.e.±0.1)couldbedetermined(Graham2001).Toourknowledge,nostudytodatehastestedthereliabilityoftherecoveryoftheS´ersicnparameter.InordertotestthesensitivityofthedecompositiontothefullrangeofbulgeprofileshapesweusemockluminosityprofileswithvaluesoftheS´ersicnparameterrangingfromn=0.2ton=4.0.Thesuiteofprofilesusedallcombinationsofre=0.8,1.5,and2′′.5,µe=18,20,and22magarcsec−2andseeingFWHMsof1.5,2.0,and2′′.5.Theprofilefitsusedinitialestimatesofn=0.4,1,2,and4,andcorrectinitialestimatesforre,µe,andthediskparameters.TheseeingFWHMwasfixedtothecorrectmodelvalue.Theresultsforthen=1initialestimatearepresentedinFig.6,whereweplottheaveragerelativefiterroronn(forthe100profileswiththesamesimulatedparameters)where n(mean)−nmodel ∆n≡fit –20– versusthemodeln(thedashedlineat∆n=0indicatesaperfectrecoveryofthemodelnparameter.)Eachpanelshowsoneparticularcombinationofµeandre,andthepanelsarearrangedsuchthattheB/Dratio,foragivenvalueofn,decreasesfromtoptobottomandrighttoleft.ThedifferentseeingFWHMvaluesarerepresentedbythreepointtypes:circles,triangles,andsquaresforseeingvaluesof1′′.5,2′′.0,and2′′.5respectively.Fig.6reinforcesthatthebulgesofevennearbylate-typespiralsaresmallandnotsampledathighenoughspatialresolutiontoyieldastable,robustsolutionfornasafloatingparameter.Giventhecorrectvalueofnasaninitialestimate(alongwiththecorrectinitialestimatesfortheotherfourparameters),thealgorithmnormallyfindsthecorrectvalueofthemodeln,butanydeparturefromthemodelvalueevenbyasmallamount,yieldssignificantlydifferentsolutionsforn,orthefitmaysimplyfail(asindicatedbytheverticallinesinthefigures).Formostoftheparametercombinations,anoffsetof∼50%intheinitialestimateofnyieldsa∼50%erroronitsdeterminedvalue. Similartestsusingthe2Dalgorithmshowaslightlymorerobustrecoveryofthemodelnparameterbasedonincorrectinitialestimates,buttherecoveryefficiencyisstillpoorandresultsbasedonafloatinginitialestimateofnarequestionable.Weareherefacedwithanunder-determinedoptimizationwithtoofewindependentdatapointsfortoomanymodelparameters(atleastthreeforthebulge).Thestrongcovariancesbetweenn,µe,andre(σn,µe,σn,re)preventauniquedeterminationofnwiththisNLLScode.Weactuallyfindthebest-fitnbygridsearch,holdingnasafixedparameter,solvingforarangeofvalues,andusingtheχ2inasdefinedin§3.1todeterminethebestfit.Furthersimulationsshowedthistechniquetobefullyreliableforthebulgesconsideredhere. Itisdifficulttoestimatetheerroronn.Eitherweuseagridsearchandnisfixed,orniskeptasafloatingparameterandvarieswidelygivenwronginitialestimates.Basedonatestwithfloatingnbutcorrectinitialestimatesforbulgeparameters,typicalseeingandskyerrorsmodifynbynomorethan20%. Basedon2DB/DdecompositionsofsimulatedimagesandJHKspirals,M¨ollenhoff&Heidt(2001)estimatethatrecoveryerrorsforparameters(Id,h,Ie,re,andn)arelessthan15%,comparabletoourtestedforvariableestimatesoftheskylevelandseeingwidth,thoughoftheirtechniqueispresented. imagesof40brightallthestandardfitfindings.Theyalsonocleardescription –21– 3.4. SummaryoftheSimulations Thetestsperformedin§3.3,foridealizedgalaxies,allowustodefineasetofguidelinesforthereliabilityandlimitationsofour1D/2Ddecompositions: •Initialestimatesforbulgeanddiskparametersareunimportantprovidedthat re(0.3)1/n∗FWHM and re −0.75n+1.150.2n+0.2 forn≤1.0forn≥1.0 •Seeingerrorsmustbeaccountedforinallbulgeparameterstudies.Forre≃FWHMandaseeingmeasurementuncertaintyatthe35%(15%)level,thebulgerecanbetrustedtowithin10–25%(0–10%),andµetowithin±0.1–0.4(0–0.2)magarcsec−2.Forre≃FWHM+1theerrorsimprovetowithin0–15%(0–10%)forre,and±0.0–0.2(0.0–0.05)magarcsec−2forµe.Thereisnoappreciableeffectduetoseeingonthediskparameters(lessthan1%). •Skysubtractionerrorsdominatediskparametererrors(∼5–15%)andarenon-negligible(upto25%)forbulgeswhoseeffectivesurfacebrightnessesarelessthanonemagnitudebrighterthantheskybrightness(i.e.for{µsky−µe}1). •Thesamplingoflate-typenearbybulgesmaynotbehighenoughtoconstraintheS´ersicnexponentuniquelyasafreeparameter.Iterativemodelfittingschemesshouldbetestedforthis.Ourapproachusesagridsearch. •Typicalseeingandskyerrorsmodifynbynomorethan20%. •The2Ddecompositiontechniquedoesnotprovideasignificantimprovementoverthe1Dmethodfortherecoveryofaxisymmetricstructuralparameterstowarranttheextracomputationaleffort. Armedwiththesebasicguidelineswecannowturnourattentiontorealdatadecom-positionsusingthe1Dtechnique. –22– 4. Bulge-to-DiskDecompositions 4.1. Outline Ourstudyofstructuralpropertiesandthevariationofgalaxianparametersasafunctionofwavelengthusesthemulti-band(BVRH)datasetoflate-typespiralgalaxiesofCourteau,Holtzman,&MacArthur(§2;PaperII).MostgalaxieshaveatleastonesetofBVRHimages,andweusemultipleobservationsfor54galaxiestoestimatesystematicerrors.OtherB/Ddecompositionanalyseshaveusedlargersamples(e.g.Baggettetal.(1998))butlackthecrucialmulti-wavelengthinformation. Weaimtodevelopastableandversatileprescriptiontocharacterizestructuralevolutionofthebulgesanddisksofgalaxies.However,justasanymorphologicaldescriptionofgalax-ies(e.g.Hubbletypes)dependsonthewaveband,intrinsicstructuralparametersarealsoexpectedtovarywithwavelengthduetostellarpopulationanddustextinctioneffects.Thus,multi-wavelengthinformationisrequiredforanyaccuratedescriptionofgalaxianstructuralparameters. Physicaldifferencesintheshapeandsizeofbulgesamonggalaxiesarealsoexpecteddependingonhowtheywereformed.Formationbyaccretionprocesses(e.g.major/minormergers)canaccountforsteeplyrisingdeVaucouleurslightprofilesinthecentralpartsofgalaxies(e.g.vanAlbada1982),whilesecularevolutionwouldyieldexponentialdistribu-tions,withorwithoutacore,ofthecentrallight.Theformationofsmallbulgesisindeedlargelyattributedtosecularprocessesandredistributionofdiskmaterial(see§5.3).ThepresentstudyisanaturalextensionofdeJong’s(1996a)structuralanalysisof86face-onspiralswithBVRIHKimaging,andGraham’s(2001)re-investigationofdeJong’sdata.DeJong’s1Dand2DB/Ddecompositionsestablishedsignificantparametricvariationsatdifferentwavelengths.Giventheintrinsiclimitationsofthedatamodeling(i.e.over-determinationoftheparameterspace),hisB/DfitsalsousedafixedS´ersicnparameter(see§3.3.6),butlimitedtovaluesofn=1,2,and4bulges.DeJong’sanalysis,andthatofCourteauetal.(1996)whoperformed1Dprofiledecompositionsfor290r-bandluminosityprofiles,supportedthenotionofexponentialbulgesanddisksandatightcorrelationofB/Dscaleparametersinlate-typespirals.EvidenceforthiscorrelationwaschallengedbyGraham&Prieto(1999)butlatervalidatedbyGraham(2001)whore-modeleddeJong’sthesissamplewitha1DB/Ddecompositiontechnique8.HisresultssupportarangeintheS´ersicshapeparameterfromlarge(n≃2−3)tosmall(n0.5)valuesforearly-tolate- –23– typespirals.AwareoftheinadequacyofbasicB/Ddecompositionsinfittingthebulgeshapeparameterduetopoordataresolutionandstrongcovarianceswithotherbulgeparameters(deJong1996b;Broeils&Courteau1997,see§3.3.6),wewerecompeledtorevisitthisissuewithourownwell-testedtechniqueandamoreextensivedatabase. OurapproachinvolvesB/Ddecompositionswithfixednvaluesthatsamplethefullparameterspaceofspiralbulges,fromn=0.1,0.2,...,4.0.Thefitsolutionsarefilteredoutonbasisofrelativeχ2andcriteriabasedonoursimulations(§3.4).WeareconcernedbelowwiththederivationofrobustB/Dparametersforeachgalaxyprofile.WecompareourresultswithGraham(2001)andothers,andtestforanyB/Dparametercorrelationsin§5. Thefollowingisbasedexclusivelyonresultsfrom1DB/Ddecompositions.Thefactthatwedonotmodelnon-axisymmetricshapes(bars,rings,ovaldistortions)lessenstheneedformorecomputationallyintensive2DB/Ddecompositions,asoursimulationsshowednoimprovementsusingthe2Doverthe1Ddecompositionmethodforaxisymmetricstucture. 4.2.B/DInitialEstimates Inordertodeterminetherangeofbestfittedbulgeanddiskparameters,weneedtoassisttheminimizationprograminfindingthelowestpossible(data−model)χ2.Fromanalysisofourmockimagesandprofiles,wehavefoundthatanyreasonableinitialestimatesforthediskparametersyieldsarobustsolution.Webaseourinitialestimatesforthediskparametershandµ0onthe“markingthedisk”technique,wherethelinearportionofaluminosityprofileis“marked”andtheselectedrangeisfitusingstandardleastsquarestechniquestodetermineitsslope.Clearly,theresultingfitsareverysensitivetotheadoptedbaseline.Wetestedvariouschoicesforthefitstartandendpointsforourgalaxyprofilesincluding:fullprofilefit,startingpointsof0.2rmaxand0.4rmaxouttormax,andafixedbaselineshiftedalongthelengthoftheprofileandtracking8differentlocations.Additionally,wealsotestedthe“momentsmethod”ofWillick(1999).Thediscrepanciesbetweenthedifferentfitsarelarge;(∼10%onaverageandupto∼100%fortheworstcases),butwefoundthatthe0.2rmaxtormaxbaselineyieldedthemostreliablefits(asjudgedbyeye).TheinnerboundaryischosentoexcludethemajorcontributionofaputativebulgeorType-IIdipandrmaxistheradiusatwhichthesurfacebrightnesserrorhassystematicallyreachedvaluesgreaterthan0.12magarcsec−2(beyondwhichthedatabecometoonoisytobetrusted).Thefitsusingthe0.2rmaxtormaxbaselineprovidedfitsthatweremorethanadequateasinitialestimatesforthediskparametersinthedecompositions. –24– Flexibilityinthechoiceofbulgeinitialparametersis,however,onlyaffordedoutsideacertainrangeofbulgesizesrelativetotheseeingdisk.Moreover,observedgalaxypro-filesshowsignificantlymorevarietythantheidealizedprofilesfromwhichtheseconclusionsweredrawn(e.g.wedidnotmodelType-IIgalaxies,orthepresenceofstrongspiralfea-tures).Accordingly,weexplorethreedifferentsetsofinitialbulgeparameterestimatestoprotectagainstlocalminimaintheparameterspace.Initialbulgeeffectiveparametersweredeterminedfrom: •Subtractionofthediskfit(basedonthe“markingthedisk”technique)fromtheoriginalprofileleavingonlythebulgelight.reisthencomputednon-parametricallyfromthedatabysummingupthelightuptotheradiuswhichencloseshalfthetotallightofthebulge.Thusµe=µ(re). •re=0.15handµe=µ0,wherehandµ0aredeterminedfromthe“markingthedisk”technique. •re=(bn/log(e))∗0.15handµe=(bn−bn=1)+µ0. Thesecondsetofinitialestimateswasmotivatedbythebulge/diskstructuralcorrelationfoundbyCourteauetal.(1996)Weaddedthethirdsetofinitialestimateswhichattempttoscalereandµemoreappropriatelytothedifferentvaluesofn.Nospecificsetofinitialestimatesworkedbetterforallcases,thoughthe3rdmethodmaybetheleastattractive.Itfailedtoprovidereliablesolutions(i.e.thefitfailedortheχ2valueswerelarge)inmostcases,butinafewcasesitalsoyieldedtheonlyviablesolution. 4.2.1.SeeingandSkyTreatment “Bulges”oflate-typespiralsaresmallandtheirluminosityprofilescanbeseverelyaffectedbyatmosphericblur.Inprinciple,iftheblurringfromtheatmosphere(seeing)canbemeasuredaccurately,itcanalsobecorrectedbyFourierdeconvolution.Inpractice,however,deconvolutionamplifiesnoise,andtheseeingFWHMissubjecttomeasurementerrors.In§3weusedextensivesimulationswithawiderangeofinputparametersandvariousvaluesofntoderiveaspaceofrecoverableparametersunderspecificseeingconditions,accountingforthetypicalmeasurementerrorsofourdata.SeeingisaccountedforbyconvolvingthemodelprofileswithaGaussianPSF(Eq.6)whosedispersionismeasuredfromfieldstars.Inordertoaccountforseeingmeasurementerrors,eachprofileismodeledwiththreedifferentvaluesoftheseeingFWHM:thenominalmeasuredvalueand±15%ofthatvalue.Ameanseeing –25– uncertaintyof±15%wasusedratherthantheindividualerrorspermeasurementasthesefluctuategreatlydue,inlargepart,tothedifferentnumberofstarsineachmeasurement.Skysubtractionerrors,oforder∼0.5–1.0%intheopticaland∼0.02%intheH-band,werealsoexaminedcarefully(§3.3.5).TheskybrightnessmeasurementerrorisaccountedforinB/Ddecompositionsbyusingthreedifferentskylevels:thenominalmeasuredvalueand±0.5%(optical)or±0.01%(H-band),ofthatvalue. Eachprofileisthusreduced3timesforeachdifferentcombinationofreandµeinitialestimates,times3seeingFWHMvalues,times3skyvalues,andtimes40differentfixedvaluesofn,foratotalof1080decompositionsperprofile. 4.3.DataFiltering The1080decompositionsforeachprofilearefirstvettedonthebasisofstructuralcriteriadeterminedfromoursimulations(§3.3).Adecompositionisdeemedacceptableifitmeetsthefollowingcriteria: •re(0.3)1/n∗FWHMandre•B/D<5 •h<15kpc;re<50kpc•re/h<1 Thefirstconstraintisderivedfromoursimulationsandeffectivelyeliminatessmallbulgeswhosesizesarecomparableto,orsmallerthan,theseeingdisk.Theremainingconstraintsarebasedonphysicalconsiderationsandhelpeliminatesolutionswithsmallχ2valuesbutunrealisticparametersforlate-typegalaxies.Note,however,thatthesephysicalconstraintsarerathergenerousanddonotcontributeanysubjectivebias. Thesuccessfuldecompositionsarethenrankedonthebasisoftwoindicators:(a)a 2 globalχ2,χ2gl,computedforthefullSBprofilefromr=0tormax;and(b)aninnerχ,χ2in,whichincludesonlythecentralregionsofthegalaxyfromr=0totwicetheradius,rb=d,wheretheintensitiesofthefittedbulgeanddiskareequal(see§3.2).χ2inwasadopted −0.75n+1.15 0.2n+0.2 forn≤1.0forn>1.0 –26– toincreasethesensitivityofthegoodness-of-fitindicatortothebulgearea9.Theradiusrb=disclearlyafunctionofthebulgeshapeandmaychangefromsmalltolargen(seee.g.Fig.2).Thusweuseaχ2perdegreeoffreedomtoremoveanydependenceofthenormalχ2toachangingre.Becauseofthepresenceofspiralarmsandothernon-axisymmetricfeatureswhichwedonotattempttomodel,thereducedχ2isalways,inprinciple,greaterthanunity.However,someofoursolutionsmayhaveχ2valueslessthanunityindicativeofanover-determinedsystem(correlatedparameters),orover-estimatederrors. Wefirstrankthesolutionsaccordingtotheirχ2glandpreserveonlythebetterhalf.Thereducedsetisthenrankedaccordingtoχ2invaluesandthebottomhalfofthedistributionisdiscarded.Thisprocessisiteratedatleasttwice,oruntilwereach50orfewersolutions.Solutionswithχ2glgreaterthan50inthisfinalsubsetarediscarded. 2 Ideally,theminimaforthedistributionsofχ2glandχinvaluesshouldagreetoacommonvalueofn,butdifferencesmayexist.Wesearchthefinal≤50solutionsforacommonsolution,startingattheminimaofeachχ2distribution.Ifthenvaluescorrespondingtothetwoχ2minimadonotagree,thenvaluesforthenextsmallestχ2valuesarecompared(withthelowerχ2valuesandwitheachother),andthisprocessisiterateduptothreetimesuntilamatchisfound.Ifthisprocessdidnotconverge,i.e.thereisnotrueminimumin 2 the((χ2gl,χin)-nspace),afinalsolutionischosencorrespondingtotheminimumvalueof 222 (χ2gl/min(χgl)+χin/min(χin)). 22 Figs.7&8showexamplesofthedistributionsof(χ2gl,χin)versusnwhereχglobal′≡ 222222 χ2gl/min(χgl,filt)andχinner′≡χin/min(χin,filt),wheremin(χfilt)istheminimumχvaluefromthesetof(≤50)filteredsolutions.Notethattheseminimadonotnecessarilycor-respondtothelowestvalueoftherespectivedistributionsfromall1080solutions,asthe 2 initialabsoluteminimamayhavebeenfilteredout(i.e.apoorcombinationofχ2gl,χinforagivensolution).Thus,thenormalizedχ2’smaybelessthanone(asiseasilyseenintheleftmostplotofFig.8).Intheseplots,theleftpanelsshowtheχ2distributionsforall1080decompositions,whiletherightpanelsdisplayonlythe≤50solutionsremainingaftertheiterativefilteringschemedescribedabove. Fig.7highlightsthesensitivityofourtechniquefortwoV-bandobservationsofUGC929takenunderdifferentseeing/skyconditions.Theleftfiguresshowafairlywell-behavedsolutionfavoringn=0.6andthefiguresontherightplotshowarathermessysolutionfavoringn=0.8.Theseeingconditionswereworseandtheskywasmuchbrighterfortheobservationshownontherightwhichcouldexplainthenoisydistributionsofboththeχ2gl –27– andχ2in. 2 Fig.8showstwodifferentbehaviorsofχ2glforprofileswithverywell-behavedχin.TheplotontheleftforourUGC784B-bandprofileillustratestheneedforanadditional,morediscriminatingstatisticforthebulgeregion.Decompositionsbasedsolelyontheχ2glgoodness-of-fitindicatormayresultinfits,liketheoneshownontherightsideofFig.9(dashed-dottedblueline).However,Fig.8a)clearlyshowsthatthefitwithn=0.6isafarsuperiormatchtothebulgeshape,asindicatedbytheχ2inbehaviour. Thefinalstepofourfilteringprocedureentailsavisualinspectionofthefinaldecom-positions.Thecriteriaforuserexaminationincludeinformationfrommultipleexposuresandmulti-bandreductionsforagivengalaxy.Profilesand/orsolutionswiththefollowingpathologieswereeliminatedfromthefinalsample:•diskprofilesthataretooshortforproperfitting •noobvious,extended,underlyingexponentialstructureforthedisk(occurspredomi-nantlyinType-IIprofiles)•unphysicallylargefittedbulge •unrealisticdiskfitforType-IIprofiles.ThefitistippedbelowthetruedisktoaccountfortheType-IIdipnearthebulge-disktransitionregionleadingtoscalelengthsthatarebiasedhigh(e.g.seeFig.12forUGC12527forexamplesof“bad”fitswhichwereeliminatedfromthefinalsample) •largedeviationsbetweensolutionsformultipleobservationsofagivengalaxy.Notsurprisingly,mostoftheeliminatedprofilesareType-IIsystems.WecautionthateventheType-IIprofiledecompositionsthatsurvivedthefullsortingprocessmaynotprovidetheidealdescriptionoftheircomplexsurfacebrightnessdistributions.ClearytheseType-IIprofilescannotbeproperlymodeledwithjustaS´ersicbulgeandexponentialdisk.Outof523images/profiles,atotalof341passedouracceptancecriteria. 4.3.1.PreferredSkyandSeeing HistogramsofthepreferredseeingFWHMandskyoffsetsforalldecompositionsinallfourbandsareshowninFig.10.Typically,alowerskybrightnesslevelispreferredbyouralgorithm.Insomecases,thiscouldbeexplainedbyanover-estimatedskylevel,butitmay –28– alsobedueinparttoprofileswithtruncatedouterdisksasinFig.13.OurprogramprefersaslightlylargerseeingFWHMthanmeasured.Thiscouldbetheresultofanunder-estimatedFWHM,orperhapsdifferencesbetweentheidealizedGaussianmodelandtherealseeingPSF.Solutionswithvariablesky/seeingestimateswereretainedinthefinalsolutionsetforassessmentofparametererrors. 4.3.2.Effectofrmax Ofsignificancetothefitresultsisthemaximumradiususedinthedecompositions.Wehaveusedthefullobservedprofileouttoradiiwherethesurfacebrightnesserrorsreachedabove0.12magarcsec−2.Thereisnoabsolutedefinitiontotheedge,rmax,ofadiskandadifferentselectioncouldyielddifferentresults.Totestthesensitivityofourparameterdeterminationstothechosenvalueofrmax,were-decomposedtheprofilesasdescribedabove,butwithafitbaselineextendingonlyto0.75×rmax.Acomparisonoftheresultsfromthetwotechniques,priortoeyeballfiltering,showsgoodagreementandwechosetokeepthelargerbaselinetoavoiddiscardinggooddata. 4.4.DecompositionExamples Thereisnoroomforafulldisplayofourcatalogoffinaldecompositions,butafewexamplesareshowninFigs.11–14.Thefullcatalogofdecompositionplotsisavailableuponrequestfromtheauthors. Inthesefigures,thesolidblackcirclesarethedatapoints,theblackdotsshowtheskyerrorenvelope(fromthemeasuredskyerror),thedashedanddashed-dottedlinesshowthediskandbulgefitsrespectively,andthesolidlineisthetotal(bulge+disk)fit.Thefitsareallseeing-convolvedusingthebestselectedseeingvalues.Thebottompanelshowsthefitresidualswhere∆µ(r)representsthe(data−model).Fig.11showsanexampleofthequintessentialType-Iprofileatallwavelengths.Fig.12showsaType-II/TransitiongalaxywhoseType-IIsignaturesignificantlyweakensfromtheopticaltotheinfrared.Fig.13showsaType-Iprofilewithanoutertruncateddisk.Suchdecompositionswillpresumablyfavoranunder-subtractedskyinattempttoaligntheinnerandouterpartsofthedisk.Hereisanexamplewhereourprocedurewithanover/under-estimationoftheskyandaninfiniteexponentialdiskmodelmaynotbeadequatesincetheouterdisktruncationappearsreal(asdetectedinallfourbands).WealsoshowanexampleofanearlybulgelesssysteminFig.14.Oursampleisdividedinto52Type-I,53Type-IIand16transitionsystems,ofwhich18 –29– truncatedand7bulgelessdisksareidentified10. 4.5.DistributionoftheS´ersicnparameter Fig.15showshistogramsoftheS´ersicnparameterforallthefinalfits(left)andgood fitsonly(right)afteruser-examinationasdescribedabove.Thedistributionofnhasadefiniterange,implyingthatnotalllate-typebulgesarebestdescribedbyanexponentialprofile,butthemeanvalueisveryclosetoone.ThisresultagreeswithGraham(2001)andrecentN-bodysimulationsofgalaxyevolution(§5.3). 4.5.1.FloatingS´ersicn In§3.3.6weshowedthatresolutionlimitationspreventedstablefittingoftheS´ersic shapeparameternasafreeparameter.Toillustratetheeffectafloatingncanhaveonfittedparameterswere-decomposedallofourgalaxyprofilesleavingnasafreeparameter(e.g.akintoGraham2001).TheresultsareshowninFig.16forthreedifferentinitialguessesforn(0.2,1.0,and4.0). Thehistogramsoftheresultingdistributionsofnrevealastrongbiastowardstheadoptedinitialestimate.All3distributionsshowalargepeakatn=0.1,indicativeofpoorbulgefits.Thehistogramforthen=1.0initialestimatelookssomewhatsimilartoourownconstrainedsolution(Fig.15),butthisissomewhatfortuitousgiventheclosely-exponentialnatureofspiralbulges.Notealsothenon-GaussiantailinFig.15isnotreproducedinFig.16forthen=1initialestimatecase.Fig.17showsacomparisonoftheχ2valuesfromthefloatedversusfixednsolutions.(Whennosuitablefitwasfound,allparametersweresetto0asindicatedbythepointslyingontheaxes;notethelargenumberoffitfailuresinthe 2 floatedncase.)Notethelargediscrepanciesinχ2inandχglbetweenthetwomethods.Thus,whilethefinaldistributionsforthen=1initialestimateandourconstrainednprocedurelooksimilar,significantdifferencesmayexistbetweenindividualdecompositions. –30– 4.6. ErrorofaSingleMeasurement Animportantfeatureofanydecompositiontechniqueisthestabilityofthefinalresultsforrepeatobservationsofagivensystem.Oursamplehas50profilesforwhichmultiple(twotofour)observationsexist,allowingforadirectmeasureofthereliabilityofourdecompo-sitions.Table1givesthemeanandmeanstandarddeviationofthefivemodelparametersfromrepeatobservationswith, x)2 (23) N wherexisthefitparameter,nisthenumberofobservationsforagivenprofile,andNisthenumberofprofileswithrepeatobservations.TheaverageerrorsfromrepeatobservationsofType-Iprofilesare±14%forn,±0.2magarcsec−2forµe,±13%forre,±0.05magarcsec−2forµ0,and±3%forh.Clearly,determinationsofdiskparametersaremuchmorestablethanforbulges.Errortermsquotedbelowcorrespondtothe1-σdeviation,unlessotherwisenoted. 4.7.ComparisonwithOtherAuthors TheoverlapbetweenoursampleanddeJong’sthesiscatalog(deJong&vanderKruit1994)amountstoonly3galaxies.DirectcomparisonofourSBprofilesshowsexcellentzero-pointandoverallshapeagreement(PaperII);however,ourB/Ddecompositionsdiffersomewhat,asshowninTable2(notethatdeJongusesfixedn=1).AlsoshowninthattablearedecompositionparametersforthesamegalaxiesbyGraham(2001)(samedataasdeJong,butusingarangeofn).Wefindscalelengthdifferencesatthe10%levelwithdeJongandGraham,consistentwith,orslightlybetterthan,typicalvariationsbetweendifferentauthors(Knapen&vanderKruit1991).AcomparabledispersionismeasuredbetweenthescalelengthsofGrahamanddeJongbasedon82R-bandprofiledecompositions.Graham’sscalelengthsare,onaverage,smallerforsmallgalaxiesandlargerforbiggalaxies(apparentsize)thandeJong’s.WefindsystematicallylargerdiskscalelengthsthandeJong(basedononly7comparisons.)Weverifiedthatskyunder/over-estimatescannotaccountforanydifferencewithdeJong.DeJong’salgorithmgivesmoreweighttotheouterpartofthedisk,possiblyexplainingtheshorterdiskscalelengths.ForprofileswithoutertruncateddisksorType-IIdecrements,greaterweightintheouterpartsfavorstheouterdiskcurvatureandthussteeperdiskfits. BulgeparametersbetweenusandGrahammatchreasonablywellforthefirsttwogalax-iesbutdiffersubstantiallyforUGC3140.Itishoweverdifficulttoestablishtrendsbased –31– onjust3comparisons.Wecan,instead,broadlycompareourrespectivedistributionsofS´ersicnwithmorphologicaltype.ThisisdoneinFig.18forcomparisonwithFig.10ofGraham(2001).Thegeneralfeaturesaresimilar,butwefindawiderrangeofnvaluesforthelater-typespossiblyduetothelargernumberofScd/Sdgalaxiesinoursample.AnotherfavorablecomparisonofbulgeparameterswithGrahamisshowninFig.20(see§5.2.1).Wealsofindanoverlapoftwogalaxies,NGC3512andNGC7782,withthesampleofBaggettetal.(1998).AswithdeJongandGraham,diskparametersagreewithin10%.BulgeparametersfromBaggettetal.aremissingforNGC3512,andthoselistedforNGC7782(bothVband)differquitesubstantiallyfromours.Theseauthorsfindµe=10.88andre=0.2foradeVaucouleursbulgeandwehaveµe=20.1andre=3.2forn=1(bestfit)orµe=25.2andre=83.8forn=4(verybadfitwithhighreducedχ2).Notethatseeingestimateswerecomparable.Surprisingly,theirµeisnearly10magnitudesbrighterthantheirµ0=20.3(wealsofindµ0=20.3)!Wefindthispathologyinanumberoftheirbulgedecompositions(seee.g.theirFig.2)wherethemodelsoftenovershootthedataatthecenter. Weconcludethissectionbynotingthatdiskscalelengthsbetweenusandotherauthorsdifferatthe10%level.OurbulgeparametersarealsoqualitativelyconsistentwiththoseofGraham. 5.Discussion Simulationsofgalaxyprofilesandimages(§3)andcarefulB/Ddecompositions(§4)haveledtoafinalsetofstructuralparametersforlate-typespiralgalaxies(Table4inAp-pendixB).Thesedatacannowbeexaminedforintrinsicstructuralvariationsandsensitivitytodustandstellarpopulationeffects.Theoutlineofthissectionisasfollows:First,wever-ifyin§5.1thatoursolutionsarenotaffectedbyprojectioneffects.Wethendiscussin§5.2B/Dparametervariationsbothinthecontextofprofiletypedifferencesandwavelengthde-pendence.InlightofexistinglimitationsinourmodelingofType-IIprofiles,ourconclusionswillbebasedmostlyonpropertiesderivedfromType-Iprofiles.Thesewillenableustoexaminetheviabilityofsecularevolutionmodelsfordiskgalaxies(see§5.3). 5.1.InclinationDependence Inordertotestforprojectioneffects,weplotthedistributionsofµeandre,aswellasdiskµ0andhasafunctionofellipticity,ε=1−b/a,inFig.19.Thesurfacebrightnesses –32– areonlycorrectedforGalacticextinctionandcosmologicaldimming(asin§2);thustheµ0andµevaluesshouldbeconsideredasupperlimits(i.e.effectivebrightnessesaretoolow).Notrendswithellipticityareseen,includingtheS´ersicnparameterandratioofdiskscalelengths(notplotted).Furthermore,TypesI,IIandTransitionarenotconfinedtoanyparticularinclinationrangeshowingthattheType-IIphenomenonisnotanaccentuatedfeatureduetoline-of-sightextinction(e.g.Type-IIgalaxiesarenotpreferentiallyinclinedwiththeplaneofthesky). 5.2.Bulge/DiskParameters Table3showstherangeoffittedparametersatBVRHwavelengthsforallgalaxyprofiletypes(Type-I,II,andTransition).ThenumberofType-IIandTransitionsystemsincludedinthistable(e.g.only4decompositionsforTransitiongalaxiesintheB-band)isdrasticallyreducedfromouroriginaldistributionasmanyofthemdidnotpassourvaliditycriteria(§4.3).NotethattheparametersforTransitionprofilesatH-bandbroadlymatchthoseofType-I’satthatwavelength. TheS´ersicshapeparameternforType-Igalaxiesisnearunity,withintheerrors,forallwavelengths.Thus,weadvocatethatthenatural,intrinsicdistributionoftheS´ersicnparameterforlate-typespiralshasameannear1.0(withσn≃0.4;seeFig.15).Byallaccounts,bulgesoflate-typespiralsarewell-approximated,onaverage,byapureexponential(luminosity/mass)densitydistribution. ThedistributionsofS´ersicµeandrearebroad,indicativeoftherangeofbulgetypesinoursample.Effectiveradiiaretypicallylessthan1kpc.ThoseofType-IIprofilesareevensmallerandseeminglybetterdeterminedthanType-I’sbutthisispredominentlyanartifactofourlimited2-componentmodeling.ExaminationofType-IIprofilefitsshowsthatthemodeldiskistypicallyshallower(thanthe“true”disk),asthefitaccountsforthefainterbulge/disktransitiondip,andbulgeeffectiveradiiarenaturallyconfinedtoasmallerrange.Thedistributionsofdiskscalelengthsandtheirratiosshowacleardecreasingtrendasafunctionofwavelength(asnotedbydeJong(1996b)).Thisstatisticallysignificanteffect,detectedforallprofiletypes,canbeexplainedeitherbyahighconcentrationofolderstarsand/ordustinthecentralregionsofthedisk.Absorptionbydustalonecanaccountforthescalelengthratiosthatwemeasure(seee.g.Evans(1994),Fig.5).Evans’modelsdonotconsiderscatteringbutforthenearlyface-ongalaxiesconsideredhere,itseffectsarenegligible(Byunetal.1994;deJong(1996c)).ThecolorgradientanalysisofdeJong(1996c)usingstellarpopulationanddustextinctionmodelssuggests,however,thatdustand –33– metallicityplayaminorrolebutthatageisbethedominantfactor.Preliminaryanalysisofourphotometricdatawiththelateststellarevolutionaryanddustmodels(MacArthuretal.,inprep.;hereafterPaperIII)suggestsacombinationofeffects.Theinterpretationofcolorgradientsisnon-trivialandmayultimatelyrequireafullspectroscopicinvestigationtoconvincinglydisentangletheeffectsofage,dust,andmetallicity. 5.2.1.B/DScaleRatios InFig.20,weplotrevs.hforourType-Idecompositions(solidsymbols)andthoseofGraham(2001)fordeJong’sBRKType-ISBprofiles(opensymbols).ThisfigureprovidesthebasisforareneweddiscussionofthesuggestionbyCourteauetal.(1996)ofstructuralcouplingbetweenthebulgeanddiskoflate-typegalaxies.Thelargedispersionsintheλreandhλ(seeTable3)nearlycancelouttoyieldtighterre/hcorrelations.ForType-Iprofileswefindre/h≃0.22±0.09atallwavelengths,correspondingtohbulge/hdisk=0.13±0.06forn=1.ThisresultisalsoborneoutintheH-bandTransitionprofiles(seeTable3).Forcomparison,Courteauetal.(1996)foundhbulge/hdisk∼0.10±0.05(orre/h=0.15±0.08)11.ThelatterresultisalsoinagreementwithGraham(2001)whofindsre/h=0.2(noquoteddispersion,butitissomewhatlargerthanoursjudgingfromFigs.20and21)forearlyandlate-typespiralsintheK-band.Thisisconsistentwithascenariowherebulgesoflate-typespiralgalaxiesaremoredeeplyembeddedintheirhostdisk,thanearlier-typebulges.Insuchan“iceberg”scenario(e.g.Graham2001),bulgesanddiskscanpreserveanearlyconstantre/hbutshowagreatrangeofµeforanygivenre.InFig.21,weshowre/hasafunctionofmorphologicaltypefromour(solidsymbols)andGraham’s(opensymbols)decompositions.AmildtrendwithHubbletypeisseenwithre/h=0.20−0.013(T−5)(1σ=0.09),rangingfromre/h∼0.20forlate-typespiralstore/h∼0.24forearliertypes.ComparisonofourandGraham’sdecompositionparametersinTable2showsthatlargedeviationsmayexist,thusonlyourdatapointswereincludedinthefitofre/hvsTabove.Datafordifferentbandsscatterevenlyaboutthemeanline.Moredataatearlierandlatertypeswouldbeneededtofirmupthistrend.Itisnonethelessremarkablethatearlyandlate-typesystemsaredescribedbyverysimilarscalingrelations,thussuggestingcomparableformationand/orevolutionscenarios. –34– 5.3. TestofSecularEvolutioninLate-TypeSpirals Thisworkhasprovidedconfirmationoftwoimportantstructuralsignaturesofspiralgalaxieswhichmustbeaddressedbymodelsofstructureformation: •Theunderlyingsurfacebrightnessdistributionoflate-typespiralshasarangefortheS´ersicnparameterfrom0.1–2,butisbestdescribed,onaverage,byadouble-exponentialmodelofbulgeanddisk,suchasfoundinType-Iprofilegalaxies. •Bulgesanddisksoflate-typespiralsarecoupled,withre/h=0.22±0.09,orhbulge/hdisk=0.13±0.06,atallwavelengths.AmildtrendwithHubbletypeisalsodetectedwitharangere/h∼0.20–0.24,fromlatetoearly-typespirals. Thefirstresultdescribesthelarge-scaleappearanceofbulges.AnalysesofHSTimageshaveshownthatasignificantfractionofbulgenucleihavepower-lawprofiles(r<500pc;e.g.Phillipsetal.1996;Balcells2001)andhostacentralcompactsource(Carollo1999).Theextentofthesenuclearsources(<0′′.3forcz<2500kms−1)issmallerthanourimages’pixelsizeandsmoothedoutbyseeing.Wethusignoretheireffectsonthebulgelightprofileinthisanalysis,butcautionthatourbulgeparametersaretobeconsideredupperlimitsifasignificantnuclearcomponentispresent. AnaturalinterpretationofthenearconstancyofB/Dsizeratiosinlate-typespiralsisthattheirbulgesformedviasecularevolutionofthedisk.Thisscenarioispossibleifdisksarebar-unstable,whichcanbetriggeredbytheglobaldynamicalinstabilityofarotationallysup-porteddiskorinducedbyinteractionswithasatelliteandifsignificantangularmomentumtransportisfeasible(e.g.Martinet1995;Combes2000;seethecollectionofpapersinCarollo,Ferguson&Wyse1999forcomprehensivereviews).Forbar-unstabledisks,inparticulartoverticaldeformations,theinnerdiskmaterialisheatedupto1–2kpcabovetheplaneintoa“bulge”viaresonantscatteringofthestellarorbitsbythebar-forminginstability.Thisinturn,catalyzesfunnelingofdiskmaterialintothecentralregionsandgeneratesoutwardtransportofdiskmaterialintheouterparts.Gasflowsmustalsobeinvokedtoexplainthehigherspatialdensitiesofbulgescomparedtotheinnerdisk.Suchamodelisexpectedtoproducecorrelatedscalelengthsandcolorsbetweenthediskanditscentralregions,asob-served(e.g.Terndrupetal.1994;Peletier&Balcells1996;Courteau1996b).A“bulge-like”componentwithanearlyexponentialprofileisexpectedfromnon-axisymmetricdisturbancesthatinduceinwardradialflowofdiskmaterial(Pfenniger&Friedli1991;Zhang&Wyse2000,andreferencestherein).Thelongerthedisk-barheatinginteraction,thegreatertheextentofthediskexponentialprofile(Valenzuela&Klypin2002).Theevolvingexponentialattractorisanempiricalresultwellestablishedinsimulations,butitlacks,atpresent,atheoreticalexplanation(Pfenniger1999). –35– Althoughabarcangrowspontaneously(<∼20Myr)fromsmallscalefluctuationsintheinnerdisk,anexternalfiniteperturbationcancatalyseitsgrowth.However,collisionlessmergersseemunsuitedtogrowingtheexponentialbulgesofpresent-daylate-typespirals,thoughtheymaycontributetotheincreaseinS´ersicnparameterseentowardearliertypesinproportiontotheaccretedsatellitemass(Barnes1988,Aguerrietal.2001).ThespontaneousortriggeredformationofbarsalsosuggeststhattheHubbletypeofgalaxiescanchangewellaftertheformationofthedisk(Pfenniger1999).Allofourbulgesaresmallerthanadiskscalelengthandcouldbecreatedbypurelybar-relatedprocesses.Instead,accretionofgalaxysatellitesisrequiredtomakebiggerbulges,eitherbeforeorafterformationofthehostdisk. Secularevolutionmodelsofstellarandgaseousdisks,especiallythroughcosmologically-motivatedthree-dimensionalN-bodysimulations,haveseensignificantdevelopmentsinthelastdecade.Forexample,thecolddarkmatter(CDM)hierarchicalhydrodynamicalsimula-tionsbyS´aizetal.(2001)andScannapieco&Tissera(inprep.)showthatsecularprocessescanoccurnaturallyduringtheformationofspiraldisksandplayanimportantroleintheregulationofstarformationandthedeterminationofthedynamicalandstructuralproper-tiesofthesesystems.Onaverage,thesimulateddisksystemsareshowntobecharacterizedbyadoubleexponentialprofilewhichnaturallyemergeswithinthehierarchicalclusteringscenario.Theseresultsarebasedonastellarformationprocessimplementedinsuchawaythatitsucceedsinformingcompactbulgesthatstabilizedisk-likestructureallowingthecon-servationofanimportantfractionoftheirangularmomentumduringtheviolentphasesoftheirassembly.Fig.22showsthedistributionoffinalS´ersicnparametersforrelaxedpresent-daylate-typedisksbyScannapieco&Tissera(inprep.);theirmodelsreproduceourresults(Fig.15)verynicely.Thedouble-exponentialstructureofbulgeanddiskmaynotalwaysbethefinalrelaxedstateofanobject,butwhenevern∼1,theB/Dscaleratiohbulge/hdisktakesitsnominalvalueof0.15.Thesemodelsdonothavebulgeswithn<0.7,possiblyduetolimitedresolutionand/orexcessiveangularmomentumtransferthatsupernovafeedbackcouldhelpprevent. SimulationsbyPfenniger(2002;privatecomm.)ofself-gravitatingdisksformingbarswhichmaylaterdissolveintoabulge-likecomponentalsoshowanearlyuniversalratiore/h,inagreementwithobservedvalues,whichisrelatedtothestellardynamicsofthebarredsystem(i.e.relativepositionoftheverticaltohorizontalresonances).Thebarlengthisrelatedtotheinitialrisingpartoftherotationcurve(yieldingascale),andthecorotationofbarsisproportionaltotheirlength.Thecorotationfixesthepositionsoftheotherresonances,whichinturnfixthemaximumextensionofbulgesmadefromresonantheating,asindeedtheverticalresonancesarestrongonlywithinthebar.Thismechanismwouldthussettheupperlimitfortheallowedrangeinre/h. –36– TheN-bodysimulationsofAguerrietal.(2001),whichconsiderthegrowthofgalacticbulgesbymergers,alsosuggestthatthefinalB/Dscaleratiore/hdoesnotscalewiththeB/Dluminosityratio.Theseauthorsshowthatthediskscalelengthhcanincreasefrom15%(lowmassretrogradesatellite)to65%(highmassdirectsatellite)whilere/hwoulddecreasefrom0.21to0.14,or33%,inthemostextremecase.Onecanthusinferre/h=0.17±0.03,independentofB/Dluminosityratio,ingoodagreementwithourfindings.TheirsimulationsarehoweverlimitedtoasmallrangeofinitialreandamorecompleteinvestigationwithabroadrangeofreandhvaluesisneededtoestablishthefundamentalnatureoftheB/Dscaleratio. 5.4.Type-IIProfiles Theabovescenariosforsecularevolutionnaturallyproducethedouble-exponentialchar-acterofthebulgeanddiskradialluminosityprofilesforlate-typesystems.However,overhalfoursampleof121late-typespiralgalaxiesshowstrongdeviationsfromthissimpletwo-componentdescription.Otherauthors(Kormendy1977;Baggettetal.1998)havecon-sideredinnerdisktruncation(plusdeVaucouleursbulges)asanalternativetomodelingType-IIlightprofiles,with Idisk(r)=I◦exp{−[r/r◦+(rhole/r)n]} (24) whererholeisthetruncationradiusandn∼3.Asdiscussedin§3.2,wedonotconsiderthisapproachatthepresent,butitspotentialmeritsshouldnotbeoverlooked. N-bodysimulations(e.g.Norman,Sellwood,&Hasan1996;Valenzuela&Klypin2002)reproduceType-IIsurfacedensityprofilesasaresultoftheredistributionofcentralstarsintoaringbyabar-likeperturbation.Approachingthecenterswherethecomponentcalledbulgeandthecomponentcalledexponentialdiskoverlap,onecannottell,inthesesimulations,ifastarorparticlebelongstowhichcomponent.Galaxycentersmayrecurrentlymovefromabarredtoanunbarredphaseandundergocontinuingbulgebuildingasthebarsdissolve12(Normanetal.1996).Thus,thepaucityofbarredgalaxiesinoursampledoesnotprecludebar-inducedeffectsasapossibleexplanationforType-IIprofiles(e.g.Gadotti&dosAnjos(2001)).Pre-existingbarsmaysimplyhavedissolved.Forexample,outof8barred-classifiedgalaxiesinoursample,6haveType-IIprofilesthuslendingsomecredencetothebar-lensscenario.Ontheotherhand,themoststronglybarredgalaxiesintheShellflow –37– sampleof∼300brightlate-typegalaxies(Courteauetal.2000)havemostlyType-Iprofiles,indistinguishableinshapeandglobalpropertiesfromtheprofilesofunbarredType-Igalaxies(Courteauetal.,inprep.).¿Fromaninhomogeneoussampleof167spiralgalaxies,Baggettetal.(1996)findonlyaweaktendencyforbarredgalaxiestohaveahigheroccurenceofType-IIprofiles.ThelinkbetweenType-IIprofilesandbarredgalaxiesisthusunsecuredatpresent. Type-IIprofilesmayalsobeexplainedbyextinctioneffectsinthedisk.Increasedopacitytowardsthecentraldiskcancauseadepressionintheluminosityprofile,especiallyatshorterwavelengths.RealisticType-IIprofiles(inshapeandcolors)havebeenproducedwithexponentialdistributionsofstarsanddustandvariablelayeringparameters(Evans1994).Ifdustextinctioncausestheinnerdiskprofiledip,Transitiongalaxieswouldjustbeacaseoflesserdustcontent,whereasbonafideType-IIsystemsremainopticallythick,evenatH-band.Usingfar-infrared(FIR)toB-bandfluxratios,andradiationtransfermodelsforthedust(Gordonetal.2001),wehavetestedfortheoriginofType-IIsignatureasbeingduetoextinction.TheFIR/Bfluxratioshouldbehigherforthedustiersystems.Unfortunately,ourmeasuredtotalFIR/Bfluxratiosarestatisticallyidentical(withlargescatter)forType-I,Type-II,andTransitiongalaxies(PaperIII),thusthwartinganyclearinterpretation.TheIRAS60and100µmfluxeshavetoolowresolutionandtoolargeerrorstoseparatetheinnerdiskdustemissionfromthewholegalaxy. Ifstellarpopulationeffectsarerelevant(Prietoetal.1992),age/metallicitygradientsshouldbedetectedatthebulge/disktransitioninTransitionsystems.Wewillfurtherinvestigatethedustand/orstellarpopulationoriginoftheType-IIdipinPaperIII. 6.SummaryandConcludingRemarks ThisstudyhasfocusedonthedevelopmentofrigorousB/Ddecompositiontechniquesusinganew,comprehensive,multi-bandsurveyoflate-typespiralgalaxies.WeexaminethreetypesofSBprofiles,FreemanType-IandType-II,andathird“Transition”classforgalaxieswhoseprofileschangefromType-IIintheopticaltoType-Iintheinfrared.ThisdistinctionisimportantsinceType-IIandTransitionprofilescannotbeadequatelymodeledbyasimpletwo-componentmodelofthebulgeanddisk.Thus,ourmainresultsarebasedonType-Iprofiles. Basedonextensivesimulations,carefultreatmentofskyandseeingmeasurementerrors,andrepeatobservationsweareconfidentthatsystematicerrorsare20%forthebulgecomponents,includingtheS´ersicshapeparameter,and5%fordiskcomponents. –38– Themainconclusionsfromoursimulationsandfinalprofiledecompositionsareasfol-lows: •SimulationstodeterminetherangeofacceptablesolutionsforanyB/Ddecompositionprogramarecrucial.Thereliabilityofbulgemodelparametersislimitedbytherelativesizeofthebulgeandseeingdisk,seeingerrors,theintrinsicbulgeshape,skybrightnessanderrors.Diskparametersarefairlyrobusttosystematicerrors,withtheexceptionofimproperbulgeshapesandskyerrorswhichcanhavedramaticeffectsonbothmodeleddiskandbulgecomponents. •TheS´ersicbulgeshapeparameterfornearbylate-typegalaxiesshowsarangebetweenn=0.1−2,but,onaverage,theirunderlyingsurfacebrightnessdistributionisbestdescribedbyadouble-exponentialmodelofbulgeanddisk. •Diskscalelengthsdecreaseatlongerwavelengths,indicativeofahigherconcentrationofolderstarsand/ordustinthecentralregionsrelativetotheouterdisk. •WeconfirmandreinforcetheresultofCourteauetal.(1996)ofastructuralcouplingbetweenthebulgeanddiskoflate-typespirals.Wefindre/h=0.22±0.09,orhbulge/hdisk=0.13±0.06,independentofwavelength.AmildtrendwithHubbletypeisobservedwithre/h=0.20−0.013(T−5)(1σ=0.09),rangingfromre/h∼0.20forlate-typespiralstore/h∼0.24forearliertypes.Theseresultsareconsistentwithscenariosofbulgeformationinwhichbulgesoflate-typespiralgalaxiesaremoredeeplyembeddedintheirhostdiskthanearlier-typebulges.Underthis“iceberg”scenario,bulgesanddiskscanthuspreserveanearlyconstantre/hbutshowagreatrangeofµeforanygivenre.Theobservedscaleratioisconsistentwithnumericalsimulationsofself-gravitatingdisksandprobablyrelatedtothestellardynamicsofanactualorpre-existingbarredsystem. •TheinnerbrightnessprofilesignaturesofType-IIgalaxiesarelikelyexplainedbyacombinationofdustextinctionandstellarpopulationeffectsandperhapslinkedtotheoccurenceofabar,butnodecisiveconclusioncanbederivedatpresent. –39– WearegratefultoMarcBalcells,EricBell,RoelofdeJong,andDanielPfennigerfortheircommentsonearlierversionsofthismanuscript.CeciliaScannapiecoandPatriciaTisseraarealsothankedforsharingtheirmaterial(Fig.22)inadvanceofpublication.AlisterGrahamkindlyprovidedtablesofhisprofiledecompositionsofdeJong’sSBprofilesforcomparisonwithouranddeJong’ssimilarresults.Wealsowishtothanktheanonymousrefereeforsuggestionsandcommentsthathelpedimprovedthepresentationandcontentofthepaper.ThisresearchhasmadeuseoftheNASA/IPACextragalacticdatabase(NED)whichisoperatedbybytheJetPropulsionLaboratory,CaliforniaInstituteofTechnology,undercontractwiththeNationalAeronauticsandSpaceAdministration.LMandSCacknowledgefinancialsupportfromtheNationalScienceandEngineeringCouncilofCanada. A.FunctionalformfortheS´ersicbnparameter Eq.14cannotbesolvedinexplicitclosedformforbn.Manyofthenumericalandana-lyticalsolutionsfoundintheliteratureagreewellforn>1butdiffersignificantlyforsmaller valuesofn.Fig.23showsacomparisonofthetwomostcommonlyusedapproximations(short-andlong-dashedcurves)withtheexactsolutionforbn,computedtoanumericalprecisionofonepartin107foralln≤10(seealsoFig.2inGraham1999). AswewishtotestforspiralbulgeswithS´ersicn’sassmallas0.1,wehaveadoptedaformalismthatisvalidforalln.Tomaintaincomputationalsimplicity,andensureasuitablyaccuratesolutionwefounditpracticaltodividethecurveintotwosegments.Foralln>0.36weusetheasymptoticexpansionofCiotti&Bertin(1999)uptoO(n−5)(theirEq.18), bn∼2n− 1 405n + 46 1148175n3 − 2194697 –40– B. DecompositionResultsfortheTypeIProfiles Table4givesrelevantphotometricinformationand1DB/DdecompositionresultsforthefinalsetofTypeIgalaxyprofiles.DecompositionresultsforType-IIandTransitiongalaxiesareavailablefromtheauthorsuponrequest,withthecautionthatparametersfortheseprofiletypesshouldbeinterpretedwithcare.Theentriesarearrangedasfollows: Column(1):(UGCnumber)(observationnumber)(passband)foreachprofile;Column(2):Ellipticity,ε≡(1−b/a).Thefinalellipticity(andpositionangle)estimatescorrespondtoanaverageofthosevaluesfromthefivecontourssurroundingthebestisophotalfitintheouterdisk,asdeterminedbyeye.Thisestimateisclearlysensitivetothepresenceofspiralarms.Thetypicalinclinationerroris∼3deg,independentofellipticity; Column(3):Skybrightnessinmagarcsec−2,measuredfrom4skyboxeslocatedbetweenthedetectoredgesandafairdistanceawayfromthegalaxy.Typicalrmsskyerrors,computedfromthedeviationsofthemeanskycountsinthoseskyboxes,are∼0.5−1.0%intheopticaland0.05%intheIR.Thesubscriptsindicatetheskyoffsetpreferredbyourselectionprocessasdescribedin§4.2.1and§4.3(andseeFig.10),where“+”and“−”indicate0.5%foropticaland0.01%forH-bandover-andunder-subtractedskiesrespectively.Nosubscriptindicatesthatthemeasuredskywaspreferred; Column(4):SeeingFWHMvalues,computedastheaverageoftheFWHMsofallnon-saturatedstarsmeasuredautomaticallyoneachimageframe;typically10to30measure-mentsperimagewereusedforeachFWHMestimate.Theaccuracyoftheseeingestimateperimageisroughly20%fortheopticalbandsand30%fortheH-band.Thesubscriptsindicatetheseeingoffsetpreferredbyourselectionprocessasdescribedin§4.2.1and§4.3,(andseeFig.10)where“+”and“−”indicate15%over-andunder-estimatedseeingFWHMrespectively.NosubscriptindicatesthatthemeasuredseeingFWHMwaspreferred;Theupperandlowerboundariesintheremainingcolumnscorrespondtothemaximumandminimumvaluesofthe≤50(outof1080total)solutionsleftafterfiltering(see§4.3); Column(5):BestfitS´ersicnbulgeshapeparameter; Column(6):Bulgeeffectivesurfacebrightness,µe,inmagarcsec−2,correctedforGalacticextinctionandcosmologicalredshiftdimming,asdescribedin§2.2; Column(7):Bulgeeffectiveradius,re,inarcseconds; Column(8):Bulgeeffectiveradius,re,inkpc.ConvertedtoaphysicalscaleusingtheLocalStandardofRestvelocity,VLG(seePaperII); –41– Column(9):Exponentialdiskcentralsurfacebrightness,µ0inmagarcsec−2,correctedforGalacticextinctionandcosmologicalredshiftdimmingasdescribedin§2.2; Column(10):Exponentialdiskscalelengthh,inarcseconds; Column(11):Exponentialdiskscalelengthh,inkpc.ConvertedtoaphysicalscaleusingtheLocalStandardofRestvelocity,VLG(seePaperII); Column(12):Bulge-to-diskluminosityratio,B/D,calculatedusingEq.17in§3.1. –42–REFERENCES Aguerri,J.A.L.,Balcells,M.&Peletier,R.F.2001,A&A,367,428Andredakis,Y.C.&Sanders,R.H.1994,MNRAS,267,283 Andredakis,Y.C.,Peletier,R.F.,&Balcells,M.1995,MNRAS,275,874 Baggett,W.E.,Baggett,S.M.,&Anderson,K.S.J.1996,ASPConf.Ser.91:Barred Galaxies.eds.R.Buta,D.A.Crocker,&B.G.Elmegreen,91Baggett,W.E.,Baggett,S.M.,&Anderson,K.S.J.1998,AJ,116,1626 Balcells,M.2001,ASPConf.Ser.249:TheCentralKiloparsecofStarburstsandAGN: TheLaPalmaConnection,eds.J.H.Knapen,J.E.Beckman,I.Shlosman,andT.J.Mahoney,140Barnes,J.E.1988,ApJ,331,699 Bevington,P.R.&Robinson,D.K.1991,DataReductionandErrorAnalysisforthe PhysicalSciences(McGraw-HillBookCompany)Broeils,A.H.&Courteau,S.1997,ASPConf.Ser.117:DarkandVisibleMatterinGalaxies andCosmologicalImplications,eds.M.PersicandP.Salucci,74Burstein,D.1979,ApJ,234,435 Burstein,D.&Heiles,C.1984,ApJS,54,33 Burstein,D.,Willick,J.,&Courteau,S.1995,NATOASICProc.469:TheOpacityof SpiralDisks,eds.J.I.DaviesandD.Burstein,73Byun,Y.I.&Freeman,K.C.1995,ApJ,448,563 Byun,Y.I.&Freeman,K.C.,Kylafis,N.D.1994,AJ,432,1140Caon,N.,Capaccioli,M.,&D’Onofrio,M.1993,MNRAS,265,1013Cardelli,J.A.,Clayton,G.C.,&Mathis,J.S.1989,ApJ,345,245Carollo,C.M.1999,ApJ,523,566 Carollo,C.M.,Ferguson,H.C.,&Wyse,R.F.G.1999,TheFormationofGalacticBulges, CambridgeUniv.Press –43– Ciotti,L.,&Bertin,G.1999,A&A,353,447 Combes,F.2000,inBuildingGalaxies,eds.F.Hammer,T.X.Thuˆan,V.Cayatte,B.Guider-doni,&J.TrˆanThanhVˆan,(WorldScientific),413Courteau,S.1992,Ph.D.thesis,UniversityofCalifornia,SantaCruzCourteau,S.1996a,ApJS,103,363 Courteau,S.1996b,inMorphologyandDustContentinSpiralGalaxies,eds.D.Block& M.Greenberg(Kluwer:Dordrecht),255Courteau,S.,deJong,R.S.,&Broeils,A.H.1996,ApJ,457,L73Courteau,S.&Rix,H.-W.1999,ApJ,513,561Courteau,S.&vandenBergh,S.1999,AJ,118,337 Courteau,S.,Willick,J.A.,Strauss,M.A.,Schlegel,D.,&Postman,M.2000,ApJ,544, 636Dalcanton,J.J.1998,ApJ,495,251 Dalcanton,J.J.,Spergel,D.N.,&Summers,F.J.1997,ApJ,482,659 Davies,J.I.,Phillipps,S.,Cawson,M.G.M.,Disney,M.J.,&Kibblewhite,E.J.1988, MNRAS,232,239deGrijs,R.&Peletier,R.F.2000,MNRAS,313,800deJong,R.S.1996a,A&AS,118,557deJong,R.S.1996b,A&AS,313,45deJong,R.S.1996c,A&AS,313,377 deJong,R.S.&vanderKruit,P.C.1994,A&AS,106,451deVaucouleurs,G.1948,Annalesd’Astrophysique,11,247deVaucouleurs,G.1959,HandbuchderPhysick,53,311deVaucouleurs,G.1959,ApJ,130,728 Elmegreen,D.M.,Elmegreen,B.G.,&Eberwein,K.S.2001,BAAS,198,812 –44– Evans,R.1994,MNRAS,266,511 Fall,S.M.&Efstathiou,G.1980,MNRAS,193,189Falco,E.E.etal.1999,PASP,111,438 Ferguson,A.M.N.&Clarke,C.J.2001,MNRAS,325,781 Franx,M.1993,inIAUSymp.153,GalacticBulges,eds.H.Dejonghe&H.J.Habing (Kluwer:Dordrecht)Freeman,K.C.1970,ApJ,160,811 Gadotti,D.A.&dosAnjos,S.,2001,AJ,122,1298 Gordon,K.D.,Misselt,K.A.,Witt,A.N.,&Clayton,G.C.2001,ApJ,551,269.Graham,A.W.2001,AJ,121,820 Graham,A.,Lauer,T.R.,Colless,M.,&Postman,M.1996,ApJ,465,534Graham,A.W.&Prieto,M.1999,ApJ,524,L23 Guarnieri,M.D.,Dixon,R.I.,&Longmore,A.J.1991,PASP,103,675Haynes,M.P.&Giovanelli,R.1984,AJ,89,758 Helou,G.,Khan,I.R.,Malek,L.,&Boehmer,L.1988,ApJS,68,151Kent,S.M.1985,ApJS,59,115.301 Kent,S.M.,Dame,T.M.,&Fazio,G.1991,ApJ,378,131 Khosroshahi,H.G.,Wadadekar,Y.,&Kembhavi,A.2000,ApJ,533,162Klypin,A.etal.2002,inprep. Knapen,J.H.&vanderKruit,P.C.1991,A&A,248,57Kormendy,J.1977,ApJ,217,406Landolt,A.U.1992,AJ,104,340 Lin,D.N.C.&Pringle,J.E.1987,ApJ,320,87 Martinet,L.1995,FundamentalsofCosmicPhysics,15,341 –45– M¨ollenhoff,C.&Heidt,J.2001,A&A,368,16 Moriondo,G.,Giovanardi,C.,&Hunt,L.K.1998,A&AS,130,81Nilson,P.1973,NovaActaRegiaeSoc.Sci.UpsaliensisSer.V,0Norman,C.A.,Sellwood,J.A.,&Hasan,H.1996,ApJ,462,114Peletier,R.F.&Balcells,M.1996,AJ,111,2238 Pfenniger,D.1999,inTheFormationofGalacticBulges,eds.C.M.Carollo,H.C.Ferguson &R.F.G.Wyse(CambridgeUniv.Press),95Pfenniger,D.1993,IAUSymp.153:GalacticBulges,153,387Pfenniger,D.&Friedli,D.1991,A&A,252,75 PressW.H.,TeukolskyS.A.,VetterlingW.T.,&Flannery,B.P.1992,NumericalRecipes inFORTRAN.TheArtofScientificComputing(2ded.;Cambridge:CambridgeUniversityPress)Prieto,M.,Beckman,J.E.,Cepa,J.,&Varela,A.M.1992,A&A,257,85 Prieto,M.,Aguerri,J.A.L.,Varela,A.M.,&Mu˜noz-Tu˜n´on,C.2001,A&A,367,405S´aiz,A.,Dominguez-Tenreiro,R.,Tissera,P.B.,&Courteau,S.2001,MNRAS,325,119Scannapieco,C.&Tissera,P.B.2002,inprep.Schombert,J.M.&Bothun,G.D.1987,AJ,93,60 S´ersic,J.L.1969,AtlasdeBalaxiasAustrales(Cordoba,Argentina:ObservatorioAstro-nomico)Simard,L.etal.2002,ApJS,inpress. Terndrup,D.M.,Davies,R.L.,Frogel,J.A.,DePoy,D.L.,&Wells,L.A.1994,ApJ,432, 518Trujillo,I.,Aguerri,J.A.L.,Cepa,J.,&Guti´errez,C.M.2001,MNRAS,328,977Tully,R.B.&Verheijen,M.A.W.1997,ApJ,484,145vanAlbada,T.S.1982,MNRAS,201,939 –46– vanderKruit,P.2002,ASPConf.Ser.XXX:TheDynamics,StructureandHistoryof Galaxies,eds.G.S.DaCostaandE.M.Sadler(astro-ph/0109480)vanHouten,C.J.1961,Bull.Astron.Inst.Netherlands,16,1 Weiner,B.J.,Williams,T.B.,vanGorkom,J.H.,&Sellwood,J.A.2001,ApJ,546,916Willick,J.A.1999,ApJ,516,47 Wyse,R.F.G.,Gilmore,G.,&Franx,M.1997,ARA&A,35,637Zhang,B.&Wyse,R.F.G.2000,MNRAS,313,310 –47– Fig.1.—ExamplesofType-I(left),Type-II(middle),and“Transition”(right)SBprofiles.Bluecircles,greensquares,redtriangles,andpurpleasterisksareforB,V,R,andH-bandrespectively.ThesolidblacklinesplottedontheB-bandandH-bandprofilesarefitstotheouterexponentialdiskprofile. –48– Fig.2.—S´ersicnprofilesfordifferentvaluesofn.Thetoppanelshowsprofileswithµe=21magarcsec−2andre=3′′.5forvaluesofnintherange0.2 Fig.3.—EffectoffittinganincorrectS´ersicnbulgeonthediskscalelengthh.Eachpanelplotstheaveragerelativefittedherrors(∆h≡(hfit(mean)-hmodel)/hmodel)withsolidsymbolsandconnectedbysolidlinesasafunctionofthemodelnforabulgewithre=2′′.5andµe=20magarcsec−2.Redcircles,greentriangles,andbluesquarescorrespondtoseeingvaluesof1.5,2.0,and2′′.5respectively.Thethreepanelsareformodelnvaluesof0.2,1.0,and4.0fromlefttoright. –50– Fig.4.—Effectonthefittedrevalueofanincorrectseeingvalueinthe1Ddecomposition.Thecolumnplotsarebasedondifferentvaluesforthefractionalseeingerrorusedinthefit,where∆FWHM≡(FWHMused−FWHMmodel)/FWHMmodel.EachrowisforadifferentvalueofthemodelFWHM,1′′.5(top)and2′′.5(bottom).Eachpanelshowstheaveragerelativeerroronre,∆re(Eq.21),versusthemodelre.Thesevencurvesarefordifferentvaluesofµe:16(darkpurple),17(blue),18(red),19(green),20(magenta),21(cyan),and22(orange)magarcsec−2. –51– Fig.5.—Effectonthefittedrevalueofanincorrectseeingvalueinthe2Ddecomposition(comparewithFig.4.)Thesolidsymbolsconnectedbysolidlinesindicatetheaverage(ofthe40imagedecompositionsforeachparameterandinitialestimatecombination)relativeerroronre,∆re(Eq.21).Bluecirclesandredtrianglesareforµevaluesof18and22magarcsec−2respectively.∆FWHMisasdefinedinFig.4 –52– Fig.6.—Differencebetweenmodeledandrecoveredvaluesofnforarangeofartificialprofilesfromn=0.2−4.TheS´ersicexponentnisafreefitparameterandtheinitialestimateissetton=1.Eachpanelshowstheaveragerelativefittednerrors(∆n≡(nfit(mean)-nmodel)/nmodel)withsolidsymbolsandconnectedbysolidlinesversusthemodelnforthe9combinationsofre=0.8,1.5,2′′.5,andµe=18,20,22magarcsec−2.Redcircles,greentriangles,andbluesquarescorrespondtoseeingvaluesof1.5,2.0,and2′′.5respectively.ThepanelsareorderedsuchthattheB/Dratio,foragivennvalue,decreasesfromtoptobottomandrighttoleftpanels. –53– 2 Fig.7.—Examplesofχ2inner′(openbluetriangles)andχglobal′(filledredsquares)versusS´ersicndistributionsforthe1080decompositionsoftwodifferentV-bandobservationsofthesamegalaxy(UGC929).Inthetwosetsofplots(a)andb)),theleftpaneldisplaysall1080pointsandtherightpanelshowsonlythe(≤50)pointsremainingafteriterativefiltering.Seta)showsareasonablywell-behavedsolutionfavoringn=0.6whilesetb)showsarathernoisysolutionfavoringn=0.8. –54– 2 Fig.8.—Examplesofχ2inner′andχglobal′distributionsforasolutionwithawell-behaved 2 χ2inner′,butaflatχglobal′distribution(UGC784B-band),plota),andforaverywell-behavedsolutioninbothχ2distributions(UGC929B-band),plotb). –55– Fig.9.—Comparisonofdifferentbulgefitsforthesameprofile(UGC784B-band).Theplotontherighthasabulgefit(dashed-dottedblueline)whichislikelyunphysical.Itsχ2gl,however,islowerthanthatofthedecompositionontheleftplot,whosebulgefitlooksmore 2 realistic.Withoutadoptingtheχ2instatistic,theplotontherightisfavored.Usingtheχininadditiontotheχ2glasadiscriminator,theplotontheleftisfavored.(SeeleftplotofFig.8forthecorrespondingχ2vs.ndistributions.)Symbols,colorsandline-typesareasdefinedinFig.11. –56– Fig.10.—HistogramsofskyandseeingFWHMoffsetspreferredinouranalysisforallprofilessurvivingthefinalcut,separatedintothefourdifferentbands.NotethattheH-bandskyerrorismorethananorderofmagnitudesmallerthanintheoptical(asintheactualmeasurements). –57– Fig.11.—DecompositionresultsforaTypeIgalaxy(UGC9908).Intheupperpanelsofeachplot,thedatapointsandmeasuredskyerrorenvelopesareshownwithsolidblackcirclesanddotsrespectively.Thebluedashed-dottedandgreendashedlinesshowthebulgeanddiskfitsrespectively,andthesolidredlineisthetotal(bulge+disk)fit.Thefitsareallseeing-convolvedusingthebestselectedseeingvalues.Thebottompanelsshowthefitresidualswhere∆µ(r)≡data(r)−model(r). –58– Fig.12.—DecompositionresultsforaType-II/Transitiongalaxy(UGC12527). –59– Fig.13.—Decompositionresultsforagalaxywithatruncateddisk(UGC927).Notethatskyerrorscouldnotaccountforthetruncation. –60– Fig.14.—Decompositionresultsforagalaxywitha“bulgeless”disk(UGC10757). –61– Fig.15.—HistogramsofS´ersicnparameterfor“final”solutions(left),andthereducedsetofsolutionsafterfurthervisualexamination(right).Seetextfordetails. –62– Fig.16.—HistogramsofS´ersicnparameterfittingnasafreeparameterinthedecompo-sitions.Resultsusingthreedifferentvaluesfortheinitialestimateofnareshown:n=0.2(left),n=1.0(middle),n=4.0(right).Notethedifferenty-axisscalesineachoftheplots.Theselectioncriteriaforthefitsisasdescribedinthetext. –63– Fig.17.—χ2comparisonoffloatednversusfixednsolutions.Thepointtypesandcolorsareasfollows:B-band(triangles),V-band(squares),R-band(pentagons),H-band(asterisks),Type-I(blue),Type-II(red),andTransition(green).Notethedifferentaxisscalesforχ2in. –64– Fig.18.—S´ersicnversusmorphologicaltypeindex.Bluecircles,redtriangles,andgreensquaresindicateType-I,Type-II,andTransitiongalaxiesrespectively. –65– Fig.19.—Bulgeanddiskparametersversusellipticity(1−b/a).Thepointtypesareasfollows:Type-I(bluetriangles),Type-II(redsquares),Transition(greencircles). –66– λ Fig.20.—reversushλforourcurrentType-Idata(solidsymbols)andthedecompositionsofGraham(2001)ofdeJong&vanderKruit(1994)’sdata(opensymbols).BluecirclesareB-band,greenpentagons(ourdataonly)areV-band,redtrianglesareR-band,andmagentasquaresareH-band(us)andK-band(Graham(2001)).Thedashedlineshavea λ slopere/h=0.22forlate-typespirals.Notethatthelargedispersionsinthereandhλ(Table3)counteracttoyieldsignificantre/hcorrelations.Theleftplotisinapparentunits(arcsec)andtherightplotshowsthephysicalscaleinkpc.Thediscretenatureofourdata λ intherightplotisduetothelimitedprecisionoftheremeasurement(onedecimal). –67– Fig.21.—Distributionofre/hwithHubbletypesforourType-IgalaxiesandthoseofGraham(2001).SymbolsandcolorsareasinFig.20.Thedashedlinedescribesthefitre/h=0.20−0.013(T−5)with1σ=0.09errors(dottedlines)basedonourdataonly. –68– 543210 012Sersic n 34 Fig.22.—DistributionoftheS´ersicnparameterfromcosmologicalsimulationsbyScanna-pieco&Tissera(inprep.). –69– Fig.23.—Differencebetweentheexactnumericalvalueforbnandseveralcommonlyadoptedapproximations.Theshort(red)andlong(green)dashedlinesarethetwomostcommonlyusedapproximationsfoundintheliterature.ThesolidbluelineshowsCiotti&Bertin’sasympoticexpansionandthedottedpurplelinedepictsouradoptedextensionatn≤0.36. –70– Table1.Tableofmeanvaluesandmeanrmsdeviationsforrepeatobservations. n µe 0.130.070.160.14 21.8820.1620.0217.52 0.190.270.170.26 re1.130.810.770.85 0.080.110.110.14 µ020.9019.9619.5917.33 0.030.030.040.10 h N 1.000.980.880.95 TotalII BRH 5.354.063.763.490.180.080.070.17 32242 0.660.200.650.140.650.111.180.40 Total 20.1221.4120.1918.14 0.260.270.330.41 0.670.780.710.60 0.120.110.370.09 19.6220.6919.6017.27 0.050.050.030.04 3.735.004.512.58 0.140.140.060.17 10 –71– Table2.ComparisonofB/Ddecompositionparameters. UGC band µ0 h µe re n 463 deJong 463463 usGraham 3080 usdeJong 30803140 deJong 3140 usdeJong 3140 BBH 20.7720.5916.80 13.014.212.0 20.5120.1516.73 1.61.11.9 0.40.41.0 B21.9917.219.880.21.0 HBB 18.2821.0620.52 18.213.712.9 19.2122.1620.75 2.74.82.8 0.92.91.1 H17.2212.017.284.11.9 –72– Table3.Meanandstandarddeviation,µ(σ),forbulgeanddiskparametersfordifferenttypesandbandpasses.Ndenotesthenumberofdatapoints.Multipleobservationscount asindependententries. Param Type B V R H –73– Table4.DecompositionResultsforTypeIProfiles FWHM UGCobsband(1-b/a)(mag/⊔⊓)(′′) ′′ Profile(1) εSky(3) n(5) µe(mag/⊔⊓ (6) ′′ ) (2)(4) re(′′)(7)re(kpc)(8) µ0(mag/⊔⊓ (9) ′′ ) h(′′)(10)h(kpc)(11) B/D(12) –74–Table4—Continued FWHM UGCobsband(1-b/a)(mag/⊔⊓)(′′) ′′ Profile(1) εSky(3) n(5) µe(mag/⊔⊓ (6) ′′ ) (2)(4) re(′′)(7)re(kpc)(8) µ0(mag/⊔⊓ (9) ′′ ) h(′′)(10)h(kpc)(11) B/D(12) –75–Table4—Continued FWHM UGCobsband(1-b/a)(mag/⊔⊓)(′′) ′′ Profile(1) εSky(3) n(5) µe(mag/⊔⊓ (6) ′′ ) (2)(4) re(′′)(7)re(kpc)(8) µ0(mag/⊔⊓ (9) ′′ h ) (′′)(10) h(kpc)(11) B/D(12) –76–Table4—Continued FWHM UGCobsband(1-b/a)(mag/⊔⊓)(′′) ′′ Profile(1) εSky(3) n(5) µe(mag/⊔⊓ (6) ′′ ) (2)(4) re(′′)(7)re(kpc)(8) µ0(mag/⊔⊓ (9) ′′ h ) (′′)(10) h(kpc)(11) B/D(12) –77– Table4—Continued FWHM UGCobsband(1-b/a)(mag/⊔⊓)(′′) ′′ Profile(1) εSkyn(5) µe(mag/⊔⊓ (6) ′′ ) (2)(3)(4) re(′′)(7)re(kpc)(8) µ0(mag/⊔⊓ (9) ′′ h ) (′′)(10) h(kpc)(11) B/D(12) 因篇幅问题不能全部显示,请点此查看更多更全内容