您好,欢迎来到智榕旅游。
搜索
您的当前位置:首页The luminosity function of cluster galaxies. II. Data reduction procedures applied to the c

The luminosity function of cluster galaxies. II. Data reduction procedures applied to the c

来源:智榕旅游
arXiv:astro-ph/9910017v1 1 Oct 1999

11A&Amanuscriptno.

(willbeinsertedbyhandlater)

ASTRONOMY

AND

ASTROPHYSICS

1.Introduction

In1993/1994westartedalong-rangephotometryprogramonclustersofgalaxiesinordertoestimateindetailtheclusterLuminosityFunction(LF)andthemorphologyofthebrightestclustergalaxies.Ouraimwastogainmoreaccurateknowledgeonthistopicbothtobetterunder-standformationandevolution,andtoimprovethecom-parisonwithnumericalsimulations.Straightforwardsci-entificdriversareatthebasisofthisinvestigation:theLuminosityFunctionofclustergalaxiesatpresenttimeistheresultofclusterinitialformationandsubsequentevolution-takingintoaccountinternalphenomenaandexternalinteractions.

Morettietal.:ClustergalaxyLF.Datareduction.3

(avoidingorcomparingduplications)anditwillhelpthereadertofollowourworktoitsthecompletion.

Secondly,wedetailourobservationalstrategyandmethodsofdatareduction,particularlyinthosepointswheretheydifferfromthestandardanalysisusedintheliterature.Theywillthenformabasicreferenceforotherpapersinpreparation.Theobservingstrategiesarestronglyrelatedandtunedtothedataanalysismethods.TheseprocedureshavefirstbeenappliedtotheclusterAbell496(seealsoMolinarietal.1998,paperI,fordis-cussiononLF),forwhichwepublishherethephotometry.2.TheProject2.1.Thesample

ThesamplehasbeenselectedfromthecataloguegiveninDeGrandietal.(1999)bychoosingonlyclustersatdeclination<0o,withX-rayfluxesmeasuredinthe0.5-2.0keVenergybandlargerthan10−11ergcm−2s−1,andwithextendedX-rayemission(i.e.,sourceswithproba-bilitytobepoint-like,ascomputedbyDeGrandietal.1997,smallerthan1%).Theresultingsampleof20clustersisreportedinTable1.ColumnslistthemainX-rayandopticalpropertiesforeachsourceasfollows:Column(1)—Clustername.Column(2)—X-rayposition:J2000.0rightascension(hhmmss.s).Column(3)—X-raypo-sition:J2000.0declination(ddmmss.s).Column(4)—Clusterred-shift.Column(5)—UnabsorbedX-rayfluxcomputedinthe0.5-2.0keVbandinunitsof10−11ergcm−2s−1.Column(6)—Bautz-Morgantype.Column(7)—Opticalrichness.Column(8)—Statusofobservations(Obs.=observed)

Fig.1.Theefficiencyoftheg,r,ifiltersasfunctionofthewavelength.Incomparison,atypicalearlytypegalaxyspectrumissuperimposedattwodifferentred-shifts:z=0andz=0.12,theextremesofthecatalogueredshiftrange.

2.2.Imaging

CCDobservationsofthesampleclusterswerecarriedoutsinceDecember1994atLaSillawiththe1.5mDanishTelescopeequippedwithDFOSCcamera.Foreachclus-terweobservedamosaiccomposedof3or4slightlyover-lappingfields(Fig.2showsthemosaicofAbell496).IneachmosaicthecentreofthefirstfieldcorrespondstothecentreoftheX-rayisophotes(seetheFig.1inMolinarietal.1998.).Theotherfieldsarecentredalongaradialdirection.Foreachmosaic,thetypicaltotalobservedareais250arcmin2withatypicalmaximumangulardistanceof30arcmin(equaltoalineardistanceof2.5Mpcatz=0.05).Foreachclustertheobservationofthemostex-ternalfieldisusedmainlytoevaluatethebackground.Eachfieldisobservedwiththeg,r,ifiltersoftheGunnphotometricsystem(Thuan&Gunn1976,Wadeetal.1979).ThespectralresponseisillustratedinFig.1alongwiththeobservedspectrumofanellipticalgalaxy.Obser-vationsofeachfieldconsistof3600sexposureasaresultoftheintegrationof4×900sdifferentexposures.Uptodate,wehavecollectedphotometricobservationsof15outof20clustersofthesample(Table1).Spectroscopicobser-vationsarealsobeingplannedandwilllikelystartshortlybeforecompletionofthephotometricsample.Thispaperwilldeal,inparticular,withthedataanalysiscarriedoutfortheclusterAbell496.Howeveritreflectsthemethodwewillalsousefortheotherclusters.

󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀Fig.2.TheobservedfieldoftheclusterAbell496withthecDgalaxyintheNEcorneroftheimage.Themo-saiciscomposedof4adjoining,andslightlyoverlappingfields:theiridentificationnumber(Table2)increasesmov-ingfromNE(field0)toSOcorner(field3).TheangulardistancebetweenNEandSOcornersis30arcmin.

4Morettietal.:ClustergalaxyLF.Datareduction.

Table1.Thesample.DatarelativetoX-rayfluxandred-shiftarefromDeGrandietal.(1999).DatarelativetoopticalrichnessandmorphologyarefromAbelletal.(19).Datalabelledwith∗areourestimate.

NameA0085

00h56m11.69s

A0133

03h42m53.06s

A3186

04h25m51.02s

A3266

04h33m37.07s

A3376

06h26m20.10s

A3395

20h12m35.08s

A3695

21hm10.21s

A3827

22h10m20.09s

A3921

23h44m15.98s

A4038

23h57m00.02s

-34d45m24.5s

0.04600

-04d22m24.5s

0.07860

-12d10m49.0s

0.08380

-57d52m05.5s

0.07590

-56d50m30.5s

0.05560

-53d41m44.5s

0.05310

-13d15m20.0s

0.03284

-08d33m38.5s

0.03971

-53d37m43.0s

0.05910

-01d14m52.5s

0.04420

.8

2.406+0−0.708.2062.250+0−0.184.1881.870+0−0.179.4234.652+0−0.3.1831.313+0−0.152.9273.2+0−0.668.2021.099+0−0.170.2401.172+0−0.199.3021.214+0−0.232.11.974+0−0.178

II-IIII-III∗IIIIII-IIIII∗I

22–10222–1

Obs.–Obs.Obs.–Obs.Obs.Obs.–Obs.

3.Abell496imageprocessing

Abell496isaclass1richcluster,BautzMorgantype

I(Abelletal.19),dominatedbyasinglecentralcDgalaxy,MGC-02-12-039(α2000=4h33′37.7′′,δ2000=−13o15′43.2′′,z=0.032).ThepeakoftheX-rayemissionliesinsidethecoreofthecDgalaxy(Table1).CCDob-servationsoftheclusterwerecarriedoutduringthefirstobservingrunfrom24to27December1994.Theeffec-tivefieldoftheDFOSCcameraandThomsonTHX31156CCDis8.68×8.68arcminwithasinglepixelcorrespond-ingto0.508arsec.Thetotalareaoftheobservedfieldis224arcmin2foreachfilter(Fig.2).WelistthejournaloftheobservationsinTable2.

3.1.Flat-fieldingandmagnitudecalibration

Basicdatareduction,includingbiassubtraction,flat-fieldcorrection,magnitudecalibrationandcosmicrayssub-traction,isdoneusingtheESO-MIDASsoftwareenviron-ment.

Foreachfilterwebuildtwodifferentflat-fieldframes.Forthefirstweusetheditheringmethodtoobtaintheflatfieldframedirectlyfromscientificexposures(seeforexampleMolinarietal.1996).Thesecondflatfieldframeisbuiltusingthemedianofthedistributionofthesunsetandtwilightskyimages.Weobtaintheminimumvalueoftherationoise/sky,atbothsmallandbigscalesintheframes,usingthefirstflat-fieldingprocedureforfilteri.Forthegandrfiltersweadopttheaveragebetweenthetwodifferentflat-fieldframes,sincethisgivesthemin-

Fig.3.Thecalibrationstraightlineforfilterr.Foreachofthethreestandardstar,thetypicaluncertaintyontheoffsetmeasureis0.02magnitude.Moreover,the3differ-entaverageoffsetvaluesshowalineardependenceonthecolourofthestar.Bythelinearfit,weextrapolatetheoffsetvaluecorrespondingtog−r=0.

imumrms.Afterthereduction,thetypicalrmsoftheskyis1.5%,1%,0.75%ofthebackgroundfortheg,r,iframes,respectively.Cosmicraysareidentifiedbytheirappearanceinonlyoneoftheditheredimages.Thestarsobservedasstandardareselectedinthephotometricsys-temofThuan&Gunn(1976)andarelistedinTable3.Theoffsetofthecalibrationismeasuredasthedifferencebetweeninstrumentalmagnitude(asmeasuredwiththeg,r,ifiltersatESOtelescope)andthemagnitudeofthestandardstars.Inspiteofthefactthatweevaluatea

Morettietal.:ClustergalaxyLF.Datareduction.5

Table2.Thejournalofobservations.TheDate,Univer-salTime,airmass,exposuretime,andseeingforeachframeareshown.IneachframeseeingiscalculatedastheFWHMofthestars.

Objectfield0

2:48

1.040”1.2:331.133”1.50r

1:371.092”1.253:241.048”1.502:311.044”1.2:16

1.102

1.50

field1

2:14

1.050”1.504:061.093”1.15r

1:121.128”1.503:241.050”1.152:501.039”1.504:40

1.157

1.15

field2

5:04

1.233”1.3528-12-941:491.0”1.25r

27-12-94

1:051.134”1.305:391.372”1.351:56

1.061”1.301:161.106”1.25g

28-12-94

2:141.046900s.1.255:351.371”1.504:28

1.147”1.506:041.538600s.1.50i

2:481.040900s.1.255:02

1.240

1.50

α1950

δ1950

HD849378.3258.3838.43Ross683

11.4011.08-BD−1506290

10.7

9.4

8.334

Table4.kcorrection(Buzzoni1995)andgalacticextinc-tion(Burstein&Heiles1982)valuesusedfortheE/S0galaxiesinAbell496.

filterkcorr.

0.07

0.04

0.03

3.2.Objectsearchandanalysis

AutomaticobjectdetectionandmagnitudeevaluationhavebeendonebyusingtheINVENTORYpackage(West&Kruszewski1981)implementedintheMIDASenviron-ment.Galaxiesofthesamplespanaverylargerangeinmagnitudefromthemagnitudelimit(mag∼24,seenextsection)totheisophotalmagnitude(mag∼13)ofthecDcentralgalaxy.Thisrangecorrespondstoacomparablerangeinthesizeofthegalaxies.ItvariesfromthePSFlimit(∼3pixels)totheisophotalradiusofthecDgalaxy(∼100pixels).Becauseofthisinherentheterogeneity,thesampleisnotperfectlysuitableforautomaticsearchandanalysisofthesources.Inparticular,wemustseparatethesignalofveryextendedobjectsfromtherestoftheimagetoavoidtheproblemofmultipledetection.Theprocedureweuseiscomposedofthefollowingthreepoints.First,wemodelandsubtractthelightofthemostextendedobjects.Second,weapplytheINVENTORYstandardre-searchandanalysisproceduretoframesinwhichthere-mainingobjectsarecomparableinsize.Finally,weapplytheINVENTORYanalysisroutinetothesingle-objectim-agesofthemodelledandrebuiltextendedobjects.Herewedescribeonlythefirstpointoftheprocedurewhichistheoriginalpart.Wemodelandrebuildtheextendedsources,typicallygiantellipticalgalaxies,withaproce-duresimilartotheonedescribedbyMolinarietal.(1996).Weimprovedtheiralgorithmbymakingitmoreflexible.First,foreachdistancefromthecentreofthegalaxy,thealgorithmanalysestheazimuthalintensityprofilealongthecircularpaths(seetheleftpanelinFig.4).Thepro-jectionofanellipticalisophoteonthecircularpathsyieldsaperiodicvariationofsurfacebrightness,asshowninthepanelAoftheFig.5.ItcorrespondstotheintensityprofilealongthecircularpathmarkedontheleftpanelofFig.4.Themaximacorrespondtotheintersectionsofthecircu-larpathwiththemajorsemi-axisoftheisophote.ThenthealgorithmfitstheprofileusingaFourierseriesandalow-passfilter.Thisprocedureeliminatesthephysicalandgeometricalhighfrequencynoiseduetothediscrete

6Morettietal.:ClustergalaxyLF.Datareduction.

Fig.4.IsophotesofthecDgalaxyofAbell496fromtherawimage(leftpanel),andfromtherebuiltmodel(rightpanel).Thecoordinaterefertothepixelsoftheimage:1pixel=0.508arsec.Intheleftpanelthecircularpathat24pixelradiusismarked;theintensityprofilealongthispathisreportedinthepanelAofFig.5.Themodelisbuiltusingrawdatawherepossibleandfitvaluewhenanexternalobjectissuperimposedonthelineofsight.natureoftheCCDpixelgrid.Finally,wecalculatethedis-tributionofthedifferencesbetweenthedataandthefit:weexcludefromtheprofilethepointswhoseintensityisgreaterthan3timesthestandarddeviationofthedistri-bution(Fig.5,panelB).Thosepointsarereplacedbytheexactfitvalues.Byiteratingafewtimestheprocedure,wecanseparatethesignalsofthesuperimposedsources(Fig.5panelsC),withoutanyassumptionontheshapeoftheisophotes.Wealsomadethealgorithmmoreflexiblebyintroducingothergeometricalparameters.Inparticu-lar,weallowfortheexclusionofselectedangularprofilesintervalsfromthecalculationoftheFouriercoefficientofthetrigonometricseries.Intervalstobeexcludedarese-lectedbyvisualinspection.Theexclusionoptionisusefulwhentwoobjectsofcomparablesizeoverlapandhaveverycloseintensitymaxima.Inthisway,wecanrebuildthehid-denisophothesassumingacentralsymmetry.InFig.4wecomparetheisophotesoftherawimageofthecDgalaxy(leftpanel)withtherebuiltmodel(rightpanel).There-builtmodelisthensubtractedfromtheoriginalframetokeepthephotometricanalysisofveryextendedsourcesseparated.

Althoughtime-consuming(duetoitsinteractiveness),thisprocedureyieldsaccuratephotometricmeasurementsofboththeextendedandsmallsources.Thedescribedprocedure,infact,allowsthecompletephotometricanal-ysisofthesurfacebrightnessoftheextractedobjects(seeSect5.1fortheAbell496cD).Contrarytootherpopularautomatedprograms(e.g.SExtractor,Bertin&Arnout1996),wedonotassignapixelanditsvaluetoaunique

object,butpartitionthefluxineachpixelamongthedif-ferentobjectsdetected.Thustheisophotesarerecoveredintheirshapeandintensityforallsources.4.ThecatalogueofAbell49.1.Isophotalmagnitudedefinition

Todefineproperlyanisophotalmagnitudewefirstneedtoconsidersomedefinitionsandcorrelations(seealsoTren-tham1997).

4.1.1.Isophotalversustotalmagnitude

Thedifferencebetweentotalandisophotalmagnitudeisthedifferencebetweenthetotalflux,extrapolationofthecurveofgrowth,andthefluxintegratedwithinafixedSBvalue.Tosimulatesuchdifference,weextractfromtheframessomebrightsources(∼magnitude16)ofdiffer-entmorphologicaltypesandintegratethetotalfluxonanextrapolatedmodel.Wethenincreasethemagnitudeuptoourframelimitsbydividingtheoriginalfluxbyanumericalcoefficient.Inthisway,weobtainalistofexpectedtotalmagnitudesintherangeofinterest.Wecomparethesevalueswiththeisophotalmagnitudesasmeasuredbytheanalysisroutinewiththethresholdlistedbelow.Theamplitudeofthedifferencesisdependentonthesourceprofile.Inourdataatr∼24thedifferencesrangefrom0.1magforpointlikesourcestofewtenthofmagforE0/E6galaxiesand,littlemorethanamagni-tudefordiskdominatedobjects(Fig.6showsthecaseof

Morettietal.:ClustergalaxyLF.Datareduction.7

Fig.5.Stepsofthemodellingprocedure.A.Therawellip-ticalisophoteisprojectedonacircularpath.Theprofileshownherecorrespondstothe24pixelradiusofthecDgalaxyofAbell496asshownwithamarkedlineintheleftpanelofFig.4.Theazimuthalcoordinatehasthezeropointtowardtherightoftheimage,anditincreasescoun-terclockwise.Theperiodicshapeofperiodπoftheprofileisevident:thetwomaximaareat90and270degrees,correspondingtotheintersectionsbetweenthepathandthemajoraxisoftheellipticalisophotes(seeFig.4).Theprofileofasuperimposedsourceisevidentat30degreesasadeparturefromtheperiodicshape.WecanfindthesuperimposedobjectalongthepathmarkedinFig.4at30degreesfromthe0pointoftheazimuthalcoordinate.ThehighfrequencynoiseintheprofileshapeisduebothtoPoissonianandgeometricalnoises.B.Fitprocedureisperformedrepeatedlyexcludingstepbysteptheexter-nalobjectidentifiedat3σ.C.Whenanexternalobjectisidentified,theextendedobjectisrebuiltusingthefitvalue.Otherwise,theprofileisleftuntouched.

anelliptical-r1/4-galaxy).Thedifferenceisseeingdepen-dent.Toshowtheindependenceweconvolvetheoriginalframes(seeing≃1.3arsec)withaGaussianpointspreadfunctiontosimulateworseseeing(1.6arsec).TheeffectisillustratedinFig.6.

4.1.2.Dependenceontheseeing

Toreachinternalconsistencyonframesobtainedwithdif-ferentseeingwemustcorrecttheisophotalmagnitudesfortheseeingofeachframe.Ourapproachisasfollows.Wechoosenottoapplydirectlyanycorrectiontotheisopho-talmagnitude,but,varyingthevalueoftheSBofthelast

Fig.6.Thedifferencesbetweentheisophotalmagnitudeandthetotalmagnitudeofanellipticalgalaxy(seeing=1.3arsec)areplotted(filledsquares)versusthetotalmagni-tude.Dashedlineandcrossesshowthefeatureofthesameellipticalgalaxywithanartificiallydegradedseeing(1.6arsec).Opensquaresshowtheseeing-degradedgalaxyaf-terthecorrectionperformedaccordingtotherelationshipseeing-threshold.

isophoteasafunctionoftheseeingoftheframe,weensurethattheisophotalmagnitudevalueofafixedmorpholog-icaltypealwayscorrespondstothesamefractionofthetotalfluxofthesource.Theprocedureiseasilyjustified.Consider,forsimplicity,asourcewithaGaussianspatialbrightnessprofile:inthiscasedifferentseeinglevelscor-respondtodifferentvaluesofthestandarddeviationσ(Fig.7)andtheproblemhasasimpleanalyticalsolution.LetusconsiderabidimensionalsymmetricGaussianpro-fileI1withσ=σ1;giventhethresholdΣ1wehavetoconsiderthefluxFsubtendedbyI1from0tor1,suchthatI1(r1)=Σ1:

F=

1

2σ2

2πrdr.

Aftertheintegration,wecanwriteitasfunctionofΣ1

F=1−2πσ2

1Σ1.

Thereforegivenadifferentσ=σ2(andthesamenormal-ization),thesameisophotalfluxFisobtainedusingthe

thresholdΣ2suchthat

Σ2=(

σ1

8Morettietal.:ClustergalaxyLF.Datareduction.

Fig.7.ThetwoGaussianprofilessimulatethesameob-jectobservedwithdifferentPSF.Theprofilesarethepro-jectionsoftwobidimensionalprofileswiththesamenor-malizationanddifferentFWHM.Themarkedareasrepre-sentthesamequantityofflux.Theyrepresenttheisopho-talfluxeswithdifferentthresholdsattwodifferentseeinglevels.Accordingtoequation(1),thesecondthresholdΣ2ischoseninasuchawaythattheisophotalfluxoftheleftprofileiskeptconstant.

Therelation(1)hasbeendeducedinthecaseofGaus-sianprofilesource.Wefindthatthecorrectionsdrawnfrom(1)givegoodresultsalsofordifferentmorphologi-caltypesasshowninFigs.6and8.InFig.6weshow,inthecaseofanelliptical-r1/4galaxy,thedifferencebetweenisophotalandtruemagnitudeattwodifferentseeinglev-els(oneartificiallydegraded),andthedifferenceafterthecorrection.Atlowluminositythecorrectionsubstantiallyremovestheseeingdependence.

Thequalityofthecorrectiondiscussedabovecanbetestedintheintersectionregionsoftwooverlappingframes,whichhavebeenobtainedindifferentseeingcon-ditions.Inthisregionwehave2differentmeasuresper-formedwithdifferentseeingofalistofsourcesofrandommagnitudeandmorphologicaltype.Forthedifferencesbe-tweenthe2independentmeasures,weexpectasymmet-ricdistributionwithadispersionexponentiallyincreasingwiththemagnitudeduetothePoissonianuncertainty.Ifweremovethisdependencebynormalizingbyanexpo-nentialfactor,weexpectaGaussiandistribution.InFig.8wecanobservethatthedistributionofthemeasuresperformedwiththesamethresholdisslightlyasymmet-ric;afteradoptingthethresholdcorrectedaccordingtherelation(1)wefindthatthedistributionofdifferencesisperfectlysymmetricasatestofriliabilityofthemethoddescribed.

4.2.Samplecompleteness

Backgroundstatisticalvariationsandsourcecrowdingmayaffecttheaccuracyoftheautomaticdetectionrou-tineandthecompletenessofthephotometriccatalogue.

Fig.8.Thedistributionofthedifferencesbetween2mea-sureswithdifferentseeing(1.3arcsecvs1.4arcsec)of75sourcesafterthecorrection.Thedistributionofthediffer-encesofthemeasuresbeforethecorrectionisshownwiththesolidlineanditisslightlyasymmetric.Thedashedlineshowsthesymmetricdistributionafterthecorrection.Weuseabootstrappingtechniquetotestthesensitivityofourresultstobothfactors.First,weextracttheimageofagiantellipticalgalaxyfromoneoftheframes.Then,divid-ingbyanumericalcoefficient,wegenerateasetofmorethan30differentimagesforeachfilterintherelevantrangeofisophotalmagnitudes:16.07≤r≤24.56,15.86≤g≤24.85,15.87≤i≤24.01.Thetestimagesareaddedtotheobservedframespositionedat25subsequentdistancesfromthecentreofthecluster(assumedtobeinthecen-treofcDgalaxy).Foreachvalueofthedistancefromthecentreandmagnitude,werepeatthisprocedure100timesineachfilter,randomlychangingtheangularcoordinateoftheaddedtestimage.These100repetitionsaredividedinsmallgroupsindifferentrunstoavoidbiasduetoarti-ficialadditionalcrowding.Thisallowsustoestimatetheprobabilityofdetectingagalaxyofmagnitudematdis-tancerfromthecentreoftheclusterP(r,m).ForeachP(r,m)weestimatetheuncertaintybythebinomialdis-tributionPB[x,100,P(r,m)],whichgivestheprobabilityofobservingxsuccesseson100attemptsgivenaprobabil-ityP(r,m)forasinglesuccess.Atafixeddistancerfromthecentrewefinda100%detectionrateforbrightgalax-ies,andadropintherateatcharacteristicmagnitude∼m0(Fig.9).Theanalyticalformulaofthisfunction,givenbyafitperformedwithaFermifunctionis:

P(r,m)=

1c

+1

.

Wealsofindthatm0dependsonthedistancer.Smallerradiiareassociatedwithbrighterm0.Therelationshipcanbeparameterizedbyanhyperbole

m0=m0(r)=A−

B

Morettietal.:ClustergalaxyLF.Datareduction.9

Fig.9.BootstrapresultsattwodifferentdistancesfromthecentreofthecDgalaxyareshown.ThetwodifferentcurvesarefittedbyFermi-Diracfunctionwithdifferentvalueofthecharacteristicmagnitudem0.Goingoffcentrem0increases:atfixedmagnitude,findingafaintgalaxyiseasier.Theuncertaintyofthetestresultsisestimatebybinomialstatisticand1σlevelisshowninthefigure.whereAandBareslightlydifferentforthe3filters.Asweexpect,thisrelationisaffectedbybackgroundstatisticalvariationandsourcescrowding.Thefirststeepincreaseofm0isduetocrowdingeffectofthecentralpartoftheclus-terandtothecDhalo.Theflatshapenearanasymptoticvalueisduetothestatisticalvariationsinthebackgroundnoise.Theasymptoticvalueofm0correspondsto50%de-tectionprobabilityindependentlyofanycrowdingeffectandforeachfilterweassumeitasthelimitingmagni-tudevalueofthecatalogue(24.14,24.46,23.75,forfilterg,r,irespectively).Thetestisperformedontherawimage,withouttheexclusionofthebright,extendedob-jects.Indeed,westressthatsubtractingthesignalfromextendedsources(seeprevioussection)doesnotsubstan-tiallyimprovetheautomaticroutinedetectioncapabilityoffaintgalaxies.

Table5.ByusingfunctionP(r,m),wecanestimateoursamplecompleteness.Herewegivethecompletenessvalueofthelastthree-1magnitudebinforeachfilter.

filterg

[22.14,23.14]

[-13.39,-12.39]

95+1.7

−2.4

filterr

[22.46,23.46]

[-13.07,-12.07]96+1.5−2.2

filteri

[21.75,22.75]

[-13.79,-12.79]97+1.2−2.0

21.25

22.2523.2524.25

stars290/1867

stars

47/530

10Morettietal.:ClustergalaxyLF.Datareduction.

4.4.Errorestimate

ThePoissonianuncertaintyisthelargestsourceoferrorinourphotometricmeasurementsandcanbeestimatedbycomparingindependentmagnitudemeasurementsofthesameobjects.Inoursample,wehaveindependentpho-tometricmeasurementsoftheobjectsbelongingtotheintersectionsoftwoadjoiningfields.AsshowninTable7,theyrepresentastatisticallysignificantsubsample.Table7.Numberofobjectsbelongingtotheintersectionofdifferentfields.

Filter

Field1∩Field0

95

126

107

StartingfromthePoissonianstatistics,duetotheer-rorspropagationlaw,forthemagnitudeuncertainty,weexpect

σ(m)=const100.2m,wheretheconstantisgivenbythecharacteristicsoftheelectronics.Atmagnitude22weestimatethattheuncer-taintyofthephotometricmeasuresσ22is0.20,0.19,0.22magnitudeforfilterg,r,irespectively.Then,foreachmagnitudemwecandrawσmas

σ(m)=σ22100.2(m−22),

whichistheuncertaintyofourphotometricmeasuresasfunctionofthemagnitude.

Fig.12.WesplituptheplaneinthreedifferentregionsonthebasisoftheColour-MagnitudeRelation.UsingMet-calfeetal.(1994)terminologythethreeregionsaredefinedasthe“blue”,“thesequence”andthe“red”.Weidentify637galaxieswithinthesequencezone(littlesquares),371intheredzoneand47intheblueone.Thefilledcircleatr∼13referstocDgalaxyisophotalmagnitudeandcoreindexcolour(seenextsubsection).4.5.Descriptionofthecatalogue

Thederivedcatalogueconsistsof2355objects:2076areclassifiedasgalaxies,956galaxieshavemagnitudemea-suresinallthreefilters,1081,2055,1500galaxieshavemagnitudevaluesbelowthefilterg,r,ilimit,respectively.Weestimateg-rcoloursof1058galaxiesandg-iof955galaxies.Thewholecatalogueisavailableinelectronicform(http://www.merate.mi.astro.it/∼molinari/A496-cat.dat),whileinTable8thelistofthe40brightestgalaxiesisreported,andinTable9wesummarisethestatisticsofthecatalogueofgalaxies.Inthedifferentcolumnswelist:

–(1)IDnumberoftheobject;

–(2)EASTandSOUTHcoordinates,inarseconds,withrespecttothecentreofthecDgalaxy;

–(3)g,r,iisophotalmagnitudes,eachcomputeddowntothethresholdquotedintheprevioussection;–(4)g,r,iisophotalradius;

–(5)g-randg-icoloursindexcomputedthrougha1.5,3or5pixelaperturephotometry,dependingonthecomputedrisophotalradius;

–(6)classificationoftheobjectasstarorgalaxy.

Fig.11.Differencesbetweenrmagnitudemeasurementsofthesameobjectsperformedfromtwoframes.Plottedagainstmagnitude,theyshowtheexpectedexponentialslope.1and2σmlevelcurvesareshown.

Morettietal.:ClustergalaxyLF.Datareduction.11

Table8.Asubsampleofthephotometriccatalogue(http://www.merate.mi.astro.it/∼molinari/A496-cat.dat)report-ingthe40brightestobjectsinthecompletelistispresented.Theluminositysortinghasbeenmadeintherfilter.TheIDnumberreferstothepositioninthewholecatalogue.

ID1429

-553.3

2251

-292.9

1061

-272.2

249

-286.8

968

-587.8

935

-437.4

573

-418.3

113

-1077.9355

-25.6

632

-186.1

480

-922.3

1200

-482.8

1522

-77.7

2032

-236.8

2308

-420.9

982

-629.4

925

-516.1

826

-360.6

1604

-68.4

2082

-580.7

-60.5-1.4

17.13

16.93

16.96

8.2

9.2

7.9

159.0

17.86

16.87

16.52

6.9

9.0

9.7

0.17

0.22

121.2

17.30

16.80

16.62

8.7

9.3

8.2

0.95

1.34

200.5

17.31

16.76

16.61

8.7

9.5

8.5

0.50

0.68

4.4

17.88

16.74

16.06

19.0

20.0

18.0

0.55

0.70

69.3

17.83

16.70

15.97

20.0

22.0

19.0

1.15

1.81

star

175.2

17.44

16.63

16.44

8.8

9.3

8.4

1.10

1.87

star

304.7

16.96

16.61

16.58

9.0

9.3

8.8

0.79

1.01

681.2

17.12

16.58

16.52

7.8

9.3

9.6

0.41

0.50

-217.7

16.92

16.44

16.18

8.1

10.4

9.5

0.53

0.62

-93.0

16.91

16.38

16.19

7.4

9.7

11.8

0.46

0.72

942.2

16.50

16.18

16.18

14.0

17.0

15.0

0.56

0.74

373.6

16.61

16.08

15.

9.9

10.4

9.0

0.35

0.32

star

514.5

16.19

15.83

15.81

20.0

21.0

18.0

0.55

0.74

-198.7

16.27

15.76

15.59

11.0

11.6

9.9

0.43

0.43

star

440.7

15.98

15.48

15.42

27.0

30.0

27.0

0.

0.71

55.5

15.

15.34

15.29

31.0

37.0

30.0

0.50

0.58

star

501.1

15.66

15.15

15.25

26.0

29.0

25.0

0.56

0.60

star

23.8

14.81

14.87

14.87

11.6

13.6

12.3

0.47

0.33

star

g15.22

r14.70

i14.

36.0

40.0

34.0

-0.17

-0.10

g-r0.50

g-i0.68

star

5.Abell496photometricproperties

Inthissectionweanalysethegeneralpropertiesofthecluster.Weexaminecloselythefollowingpoints.First,bymeansoftheColour-MagnitudeRelation,weselectthemain,earlytype,componentoftheclusterpopulation.Second,weestimatetheprojectedspatialdistributionofthedifferenttypesofgalaxiesandwemeasurethecoreradiusoftheclusterastrackedbybrightgalaxies.Third,weanalyzethephotometricpropertiesofthecDcentralgalaxy.Fourth,westudythedistributionofgalaxycolourasfunctionoftheirpositionwithintheclustercore.

5.1.Thecoloursofthegalaxies

Onther/(g−r)plane(Fig.12)weemphasizethenar-rowsequenceofthelinearColour-MagnitudeRelation(CMR):thesequencedefinesthelocusofearlytypegalaxiesoftheclusterwithintheplane(Visvanathan&Sandage,1977,Arimoto&Yoshii,1987).Thecontinuouslineisdeterminedbyfittingthelocusofpointsasdefinedbyellipticalgalaxiesbrighterthanmagnitude18,exclud-ingthecDgalaxy.Theequationderivedbythebestfit

CMR(r)=−0.025r+0.914

12Morettietal.:ClustergalaxyLF.Datareduction.

Fig.13.Colour-colourplanes.Ourdataaresuperimposedontheexpectedcoloursofellipticalgalaxiesatdifferentred-shifts:eachcrossonthecontinuelinerepresentsa0.05red-shiftvariation.ThefilledsquarerepresentsthecDgalaxy,perfectlyplacedonthetheoreticalpathatred-shift0.03.Reddergalaxiesshowexpectedcoloursofellipticalgalaxiesathigherred-shift.SequencegalaxiesareslightlybluerthancDgalaxywithdispersionincreasingwiththemagnitude(seefig.12)Finally,bluegalaxieshavecoloursunmatchablewiththeearlytypegalaxycolours.Table9.Statisticsofthecatalogueofgalaxies;279clas-sifiedbrightstarsareincludedinthecatalogue,butnotinthepresentsummarytable.Atfaintmagnitudes(>20.75)weexpect15%oftheentriesareforegroundstars.Inparenthesesabsolutemagnitudelimitsarereportedas-sumingH0=50km/sec/Mpc.

Skill

−1332244h32′48′′12.(-22.93)12.04(-22.62)11.88(-22.55)

-0.50-0.61

o

′′

Gal.enters

−13112h33′49′′24.14(-12.28)24.47(-11.96)23.75(-12.67)

1.983.28

o

′′

σg(g)2+σr(r)2+0.06),

wherewetakeintoaccountphotometricuncertaintyat1σlevel(seesection4.4)andtheinherentdispersionoftherelation(estimateduponthemostluminousgalaxies).Theplaneredwardofthesequence(redzone)isexpectedtobemainlypopulatedbyhigherred-shiftgalaxies,whilethe

Morettietal.:ClustergalaxyLF.Datareduction.13

Fig.14.Projectedspatialdistributionofall(upperpanel),bright(r≤20.0)galaxies(centralpanel),andbrightsequencegalaxies(lowerpanel).WefitbrightgalaxiesdistributionswithKingfunctionsandweshowthetwodifferentcoreradiusbestvalues.Comparisonbetweentheupperandcentralpanelsuggestsaluminositysegregationeffect;comparisonbetweencentralandlowerpanelsuggestacoloursegregationeffect.Thedensityprofileisobtainedastheaverageof36profiles,andtheerrorscorrespondto1standarddeviationofthe36valuesdistribution.Intheleftpanelthedottedlinesshow1e2coreradius.

bluewardzoneislikelythelocusofclusterandforegroundlate-typegalaxies.

Tofurtherclarifythisconceptoflikelymembershipweplotourdatainthecolour-colourplane,g−rversusg−i(Fig.13).ThecontinuouslineintheplanerepresentsthelocusofpointsdefinedbyellipticalgalaxiesatdifferentredshiftsaccordingtothemodelsofBuzzonietal.(1993).Theseplotsareconsistentwiththepreviousdiscussion:a)thecDgalaxy,filledsquare,isneartheexpectedlocationofanEgalaxyattheclusterredshift,b)galaxieslocatedintheredzoneofFig.13aredisplayedalongthesequenceofhigherredshiftellipticals,andc)bluegalaxiesdonotmatchtheredshiftsequenceforellipticalgalaxies.

5.2.Spatialdistribution

Thestrategyweadoptfortheobservationshastheadvan-tageofallowingmeasuringfieldsataratherlargedistance,about2700pixels(∼1275kpc)fromtheclustercentreinareasonableamountoftelescopetime.Ontheotherhandweareforcedtoselectanadhocradialdirection.Thatiswearemoresensitivetoclusterandbackgroundfieldden-sityfluctuations.Weproceedasfollows.First,webuildthedensityframerelativetothewholemosaic.Thenwedividethedensityframein36circularsectorscentredontheclustercentreandaveragethecontributionofeachseg-mentatfixedradiusgoingfromthecentretotheexternallimitofthemosaic.Thewholesamplemeanradialsurface

󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀14Morettietal.:ClustergalaxyLF.Datareduction.

Fig.15.Spatialdistributionofredgalaxies(upperpanel)andbluegalaxies(lowerpanel)aslabelledonthemagnitude-colourplane.Redgalaxiesdonotshowanyparticularbehaviourlinkedtoclusterstructure.Bluegalaxiesremarkablycrowdat1coreradiusdistancefromthecentreofthecluster.Table10.BestfitvaluesofKingfunctionforthedistri-butionofbrightgalaxies(r<20).

SampleALL

1.807±0.2

497+22−25

0.12±0.01

structure(Fig.15upperpanel).Galaxiesbelongingtothe

bluezoneofthecolour-magnitudeplaneareidentifiedasclusterorforegroundlatetypegalaxies.Theirprojecteddistributionseemstobeinfluencedbyclusterpotential:theirdensityabruptlypeaksat1coreradiusdistancefromtheclustercentre.Thiseffecthasbeennoticedalsoinsomeoftheotherclustersthatweareanalysing.5.3.ThecentralcDgalaxy

ThecDcentralgalaxyisthebrightestmemberoftheclus-ter:itis2magnitudesbrighterthanthesecondmember.InMolinarietal.(1998)itsluminosityisregardedastoobrighttobeconsistentwithotherellipticalsanditisnotincludedinthecomputationofLF.However,asseenintheprevioussubsection,thecDmagnitudeandcolourareconsistentwiththeCMRextrapolatedfromthepopula-tionofthebrightellipticalsgalaxies.

cDgalaxiesaregenerallycharacterisedbyasurfacebrightness(SB)profilethatfallsoffmoreslowlywithra-diusthanmostellipticalgalaxies.InFig.16theprofileoftheAbell496cDgalaxyalongthemajoraxisisshownuptoadistanceof100arcsec(∼92kpc)fromthecen-tre.Inthisprofilethepresenceofthehaloisparticularly

densityprofile(Fig.14,upperpanel)doesnotclearlymakeevidenttheexcessofgalaxiesdefiningthecluster.

Duetothesegregationeffectofthemostluminousgalaxies,r<20.0,aKingprofilewellfitsthedensityprofileatthesemagnitudes(Fig.14centralpanel,andTa-ble10).ThesequencegalaxiesasdefinedbytheCMR,withr<20.0,presentahighercentralconcentrationasindicatedbythesmallercoreradius(Table10).ThisisalsotobeexpectedinarelaxedclustersincetheCMRsequencehasbeendefinedbyusingthebrightellipticalclustergalaxies.

Galaxiesbelongingtotheredregionofcolour-magnitudeplaneareidentifiedasgalaxiesathigherred-shift(seeFig.12and13).Theirdistributionishomoge-neousovertheobservedfieldwithoutanylinktocluster

Morettietal.:ClustergalaxyLF.Datareduction.

󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀󰀀15

noticeable,itdepartsstronglyfromadeVaucouleurlaw(thestraightlineinthefigure).ThecomparisonoftheSBprofilealongthenorthernmajorsemi-axis(N)withtheonealongthesouthernsemi-axis(S)(Fig.16)showsanevidentasymmetry.TheNregionofthehaloexhibitsanexcessofintensitywithrespecttotheSineachofthe3filtersintheinterval25-50arcsecofdistancefromthecentre.ThiseffectisclearlydepictedbytheisophotesinFig.17.Inspiteofthelargeextensionofthehalo,thisis

Fig.16.TheintensityprofilesofthecDgalaxyofAbell496alongtheNandSmajorsemi-axisaresuperimposed(therandiprofilesareshiftedof2and4magnitudetomakethefigureclearer).Theexcessofintensityofthenorthernsemi-axisisnoticeableintheinterval(25,50)ar-secfromthecentre.ThestraightlinesrepresentsthedeVaucouleurprofile.

somewhatfainterthanthecore.AfterfittingthecorebyadeVaucouleurlaw,wecouldsubtractitfromthecDim-ageandestimatethemagnitudeofthehalo.ThederivedtotalmagnitudesinthethreefiltersarelistedinTable11.Asalreadystated,theluminosityofthecoreisdominant.Theaveragecolourindexofthetotalprofilepresentsagradienttowardthebluemovingfromthecoretotheout-ermostpartofthegalaxy.Thisisduetothecolourofthehalothatisbluerthanthatofthecore.Withinthehaloitselfadifferenceexistsbetweenthecolourofthenorthernhemisphereofhighersurfacebrightness,andthecolourofthesouthernhemisphere.Thenorthernzoneisbluer(markedascolourexcessinFig.18).InothercDgalaxies(seeforinstanceMolinarietal.1994)thehalohasbeenfoundredderthanthecore.Therefore,thechar-acteristicsofthehalopopulationareundoubtedlyrelatedtothespecifichistoryofthecDunderconsideration.5.4.Colourgradientofthegalaxypopulation

Finally,thedistributionoftheg−rcoloursofthesequencegalaxiesisanalysedasafunctionoftheirprojecteddis-

Fig.17.ThefilterrhaloisophotesaresuperimposedtotheimageofthecDgalaxy(theNorthistowardthebot-tomoftheimage),thelastisophotecorrespondingtotheSBthreshold.Theasymmetryofthehaloemissionisclearlyevident.

Fig.18.Theaveragecolourindexofthethreecompo-nentsofthegalaxyisshown.TheyarecomparedwiththeexpectedcoloursofthestarsconvolutedfromthespectralcatalogueofVilnius,Strajzhis&Sviderskene(1972)(starsarelabelledwiththenameofspectralclass)andalsowiththecoloursofthestarsofourcatalogue(smallpoints).tancefromthecentreofthecluster.Wefindasignificantcorrelationrelativetothepopulationoffaintgalaxies.

Aspartlyexpected,brightergalaxiestendtodominateinthecentralregionofthecluster.Suchgalaxies(seealsothediscussionontheCMRrelation)tendtobesome-whatredder.Thereforeweexpectamildcorrelationbe-tweentheclusterintegratedcolour-definedasthemeancolourderivedfromthegalaxypopulationlocatedata

16Morettietal.:ClustergalaxyLF.Datareduction.

Table11.PhotometricparametersofthecDgalaxy.

Fg

51.7±5.1i

25.12±0.10

12.04±0.02

12.22±0.03

13.99±0.06

Morettietal.:ClustergalaxyLF.Datareduction.

BivianoA.,DurretF.,GerbalD.,LeF`evreO.,LoboC.,

MazureA.,SlezakE.1995A&A297,610BurnsteinD.,HeilesC.1982,AJ,,87,1165

BuzzoniA.,ChincariniG.,MolinariE.1993,ApJ,410,499BuzzoniA.1995,ApJS98,69

CollessM.19,MNRAS237,799

DeGrandiS.,MolendiS.,BohringerH.,ChincariniG.,Voges

W.,1997,ApJ,486,738

DeGrandiS.etal.1999,ApJ,514,inpress

DeProprisR.,PritchetC.J.,1988,AJ,116,1118

GunnJ.E.,HoesselJ.G.,OkeJ.B.,1986,ApJ,306,30

GarilliB.,BottiniD.,MaccagniD.,CarrascoL.,RecillasE.,

1996,ApJs105,91

HilkerM.etal.1999,A&AS,134,75

Lopez-CruzO.,YeeH.K.C.,BrownJ.P.,JonesC.,FormanW.,

1997,APJL,101,97L

MetcalfeN.,GodwinJ.G.,PeachJ.V.,1994MNRAS267,431MolinariE.,BuzzoniA.,ChincariniG.,Pedrana,M.D.,1995,

A&A292,

MolinariE.,Smareglia,1998A&AS330,447

MolinariE.,BuzzoniA.,ChincariniG.,1996,A&AS,119,391MolinariE.,ChincariniG.,MorettiA.,DeGrandiS.,1998,

A&A338,874,PaperI

RobinA.etal.1995,http://WWW.obsbesancon.fr/

/www/modele/modele

17

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- zrrp.cn 版权所有 赣ICP备2024042808号-1

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务