一、中考要求:
1.能根据实际问题中的变量之间的关系,确定一次函数关系式;
2.能将简单的实际问题转化成数学问题(建立一次函数),从而解决实际问题; 3.在应用一次函数解决时间问题的过程中,体会数学的抽象性和应用的广泛性。 二、知识要点:
1.一次函数的自变量取值范围一般是一切实数,图像是一条直线但由实际问题得到的一次函数解析式,自变量的取值范围受一些条件的限制往往不是取一切实数,则图像为线段或射线,所以在解题过程中,特别是画函数图像时要注意自变量取值范围;
2.一次函数的实际问题通常有两种类型,一是结合图像用待定系数法求一次函数解析式进而解决实际问题,二是与解方程或解不等式(组)相结合运用分类讨论法的决策题; 3.用一次函数解决实际问题,也就是把实际问题转化为数学问题, 在解题过程中,体会建模、化归、数形结合、分类讨论等数学思想。 三、典例剖析:
[例题1] 一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x(h),两车之间的距离为y(km),图中的折线表示y与x之间的函数关系.根据.......图象进行以下探究:
(1)甲、乙两地之间的距离为 km;
(2)请解释图中点B的实际意义;(3)求慢车和快车的速度; (4)求线段BC所表示的y与x之间的函数关系式, 并写出自变量x的取值范围;
(5)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同. 在第一列快车与慢车相遇30分钟后,第二列快车与慢车相遇.求第 二列快车比第一列快车晚出发多少小时?
y/km A 900 D C O
B 4 12 x/h
[例题2] 某渔场计划购买甲、乙两种鱼苗共6000尾,甲种鱼苗每尾0.5元,乙种鱼苗每尾
0.8元.相关资料表明:甲、乙两种鱼苗的成活率分别为90%和95%. (1)若购买这批鱼苗共用了3600元,求甲、乙两种鱼苗各购买了多少尾? (2)若购买这批鱼苗的钱不超过4200元,应如何选购鱼苗?
(3)若要使这批鱼苗的成活率不低于93%,且购买鱼苗的总费用最低,应如何选购鱼苗?
[例题3] 某蔬菜加工厂承担出口蔬菜加工任务,有一批蔬菜产品需要装入某一规格的纸箱.供应这种纸箱有两种方案可供选择:
方案一:从纸箱厂定制购买,每个纸箱价格为4元;
方案二:由蔬菜加工厂租赁机器自己加工制作这种纸箱,机器租赁费按生产纸箱数收取.工厂需要一次性投入机器安装等费用16000元,每加工一个纸箱还需成本费2.4元. (1)若需要这种规格的纸箱x个,请分别写出从纸箱厂购买纸箱的费用y1(元)和蔬菜加工厂自己加工制作纸箱的费用y2(元)关于x(个)的函数关系式; (2)假设你是决策者,你认为应该选择哪种方案?并说明理由.
[例题4] 甲、乙两辆汽车沿同一路线赶赴距出发地480千米的目的地,乙车比甲车晚出发2小时(从甲车出发时开始计时).图中折线OABC、线段DE分别表示甲、乙两车所行路程y(千米)与时间x(小时)之间的函数关系对应的图象(线段AB表示甲出发不足2小时因故停车检修).请根据图象所提供的信息,解决如下问题: (1)求乙车所行路程y与时间x的函数关系式; (2)求两车在途中第二次相遇时,它们距出发地的路程;
(3)乙车出发多长时间,两车在途中第一次相遇?(写出解题过程)
y(千米)
随堂演练:
1. 张老师带领x名学生到某动物园参观,已知成人票每张10元,学生票每张5元,设门票的总费用为y元,则y= .
2.如图,正方形ABCD的边长为10,点E在CB的延长线上,EB10,点P在边CD上运动(C、D两点除外),EP与AB相交于点F,若CPx,E 四边形FBCP的面积为y,则y关于x的函数关系式是 .
3. 小华用500元去购买单价为3元的一种商品,剩余的钱y(元)与购买这种商品的件数x(件)之间的函数关系是______________, x的取值范围是__________
4.一支蜡烛长20厘米,点燃后每小时燃烧5厘米,燃烧时剩下的高度n(厘米)与燃烧时间t(时)的函数关系的图象是( )
O A D 2 P B 4.5 6 8 10 x(小时)
F 480 C E A F B D P C
(A)
(B)
(C)
(D)
5.如图,在边长为2的正方形ABCD的一边BC上,一点P从B点运动到C点,设BP=x,四边形APCD的面积为y.
(1)写出y与x之间的关系式,你能求出x的范围吗? (2)当x为何值时,四边形APCD的面积为
3? 2 (3)当点P由B向C运动时,四边形APCD的面积越来越大,还是越来越小?
6.某厂有甲,乙两条生产线先后投产,在乙生产线投产以前,甲生产线已生产了200吨成品;从乙生产线投产开始,甲,乙两条生产线每天分别生产20吨和30吨成品.
(1) 分别求出甲,乙两条生产线投产后,总产量y(吨)与从乙开始投产以来所用时间x(天)之间的函数关系式;
(2) 分别指出第15天和25天结束时,哪条生产线的总产量高?
A D C ↑ P B
7. 星期天8:00~8:30,燃气公司给平安加气站的储气罐注入天然气.之后,一位工作人员以每车20立方米的加气量,依次给在加气站排队等候的若干辆车加气.储气罐中的储气量y(立方米)与时间x(小时)的函数关系如图2所示.
(1)8:00~8:30,燃气公司向储气罐注入了多少立方米的天然气?
(2)当x≥0.5时,求储气罐中的储气量y(立方米)与时间x(小时)的函数解析式; (3)请你判断,正在排队等候的第18辆车能否在当天10:30之前加完气?请说明理由.
8. 凯里市某大型酒店有包房100间,在每天晚餐营业时间,每间包房收包房费100元时,包房便可全部租出;若每间包房收费提高20元,则减少10间包房租出,若每间包房收费再提高20元,则再减少10间包房租出,以每次提高20元的这种方法变化下去。
(1)设每间包房收费提高x(元),则每间包房的收入为y1(元),但会减少y2间包房租出,请分别写出y1、y2与x之间的函数关系式。
(2)为了投资少而利润大,每间包房提高x(元)后,设酒店老板每天晚餐包房总收入为y(元),请写出y与x之间的函数关系式,求出每间包房每天晚餐应提高多少元可获得最大包房费收入,并说明理由。
y(立方10 000 8 000 2 000 0 0.5 10.图2 x(小时)
因篇幅问题不能全部显示,请点此查看更多更全内容