试分别计算并画出P 、PI及 PID控制的响应曲线y(KT)~KT,其中Kp=1.2,KI和KD参数计算采用D(z)与HG(z)的零、极点抵消的方法,作业最后简要写出小结,重点阐述比例、积分和微分环节系统动、静态特性的作用。
解:系统广义对象的Z函数
1esT10HG(z)s1s2s5510Z1esTss1s20.0453z10.904z10.905z110.819z111
0.0453z0.904z0.905z0.819(一)、比例调节(P)
由题意知Kp=1.2,D(z)=Kp;
D z ×HG z =
使用MATLAB编程,代码如下: clc; clf;
clear all;
G=tf(conv([0,0.0453],[1,0.904]), conv([1,-0.905],[1,-0.819] ),0.1); G=d2c(G);
G=feedback(0.8*G,1); step(G); hold on ;
G1=tf(conv([0,0.0453],[1,0.904]), conv([1,-0.905],[1,-0.819] ),0.1); G1=d2c(G1);
G1=feedback(1.2*G1,1); step(G1);
Kp×0.0453(z+0.904)
z−0.905 (z−0.819)
hold on ;
G2=tf(conv([0,0.0453],[1,0.904]), conv([1,-0.905],[1,-0.819] ),0.1); G2=d2c(G2);
G2=feedback(2.4*G2,1); step(G2); hold on ;
legend('kp=0.8','kp=1.2','kp=2.4'); gtext ('kp=0.8'); gtext ('kp=1.2'); gtext ('kp=2.4');
截图如下:
(二)、比例积分调节(PI)
由题意知Kp=1.2,利用零极点相消法;
z KI+1.2 −1.20.0453(z+0.904)
Dz×HGz=× z−0.905 (z−0.819)z−1当消掉零点0.905时,KI=0.126;
0.0453×1.326×(z+0.904)
D z ×HG z =
(z−1)(z−0.819)
当消掉零点0.819时,KI=0.265;
0.0453×1.465×(z+0.904)
Dz×HGz=
(z−1) z−0.905 使用MATLAB编程,代码如下: clc; clf;
clear all;
G1=tf(conv([0,0.0453*1.326],[1,0.904]), conv([1,-1],[1,-0.819] ),0.1); G1=d2c(G1);
G1=feedback(G1,1); step(G1); hold on ;
G2=tf(conv([0,0.0453*1.465],[1,0.904]), conv([1,-1],[1,-0.905] ),0.1); G2=d2c(G2); G2=feedback(G2,1); step(G2); hold on ;
legend('Kp=1.2,KI=0.126,KD=0','Kp=1.2,KI=0.265,KD=0'); gtext ('Kp=1.2,KI=0.126,KD=0'); gtext ('Kp=1.2,KI=0.265,KD=0');
截图如下:
(三)、比例积分微分调节(PID)
由题意知Kp=1.2,利用零极点相消法;
z2 KI+KD+1.2 −z 2KD+1.2 +KD0.0453(z+0.904)
D z HG z =× z(z−1)z−0.905(z−0.819)消去(z-0.905)(z-0.819)可得KD=3.667,KI=0.083;
0.0453×4.95(z+0.904)
DzHGz=
z(z−1)
使用MATLAB编程,代码如下: clc; clf;
clear all;
G1=tf(conv([0,0.0453*4.95],[1,0.904]), conv([1,0.1],[1,-1] ),0.1);%±äÐÍ
%G1=d2c(G1,'tustin'); G1=d2c(G1); G1=feedback(G1,1); step(G1); axis([0 6 0 1]); hold on ;
legend('Kp=1.2,KI=0.083,KD=3.667');
截图如下:
(四)、对比总结
使用MATLAB编程,代码如下: clc; clf;
clear all;
G=tf(conv([0,0.0453],[1,0.904]), conv([1,-0.905],[1,-0.819] ),0.1); G=d2c(G);
G=feedback(1.2*G,1); step(G); hold on ;
G1=tf(conv([0,0.0453*1.326],[1,0.904]), conv([1,-1],[1,-0.819] ),0.1); G1=d2c(G1); G1=feedback(G1,1); step(G1); hold on ;
G2=tf(conv([0,0.0453*1.465],[1,0.904]), conv([1,-1],[1,-0.905] ),0.1); G2=d2c(G2); G2=feedback(G2,1);
step(G2); hold on ;
G3=tf(conv([0,0.0453*4.95],[1,0.904]), conv([1,0.1],[1,-1] ),0.1); %G3=d2c(G3,'tustin'); G3=d2c(G3); G3=feedback(G3,1); step(G3); hold on ;
axis([0 12 0 1.8]);
legend('KP=1.2;KI=0 ;KD=0','KP=1.2;KI=0.126;KD=0','KP=1.2;KI=0.256;KD=0','KP=1.2;KI=0.083;KD=3.667'); gtext ('KP=1.2;KI=0 ;KD=0'); gtext ('KP=1.2;KI=0.126;KD=0'); gtext ('KP=1.2;KI=0.256;KD=0'); gtext ('KP=1.2;KI=0.083;KD=3.667');
截图如下
总结:
比例调节(P)的稳态误差不可消除,随Kp增大稳态误差减小;比例积分调节(PI)加入积分调节提高了系统的精度,但是系统的动态性能变差,超调量增加,而且调节时间变长;比例积分微分调节(PID)通过积分作用消除误差,而微分控制可缩小超调量,加快反应,是综合了PI控制与PD控制长处并去除其短处的控制。
因篇幅问题不能全部显示,请点此查看更多更全内容