您好,欢迎来到智榕旅游。
搜索
您的当前位置:首页苏尼特右旗民族中学2018-2019学年高二上学期数学期末模拟试卷含解析

苏尼特右旗民族中学2018-2019学年高二上学期数学期末模拟试卷含解析

来源:智榕旅游
苏尼特右旗民族中学2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________

一、选择题

1. 设函数的集合

,平面上点的集合

,则在同一直角坐标系中,P中函数

的图象恰好经过Q中

两个点的函数的个数是 A4 B6 C8 D10

2. O为坐标原点,F为抛物线A.1

B.

C.

D.2

,则S2015的值是( )

P是抛物线C上一点, 的焦点,若|PF|=4,则△POF的面积为( )

3. 已知正项数列{an}的前n项和为Sn,且2Sn=an+A.

B.

C.2015 D.

4. 一个正方体的顶点都在球面上,它的棱长为2cm,则球的表面积是( ) A.8πcm2

B.12πcm2 C.16πcm2 D.20πcm2

5. 已知f(x)=m•2x+x2+nx,若{x|f(x)=0}={x|f(f(x))=0}≠∅,则m+n的取值范围为( ) A.(0,4) B.[0,4) C.(0,5] D.[0,5]

6. 已知命题p:x0,xA.x0,x12,则p为( ) x112 B.x0,x2 xx11C.x0,x2 D.x0,x2

xx7. 某市重点中学奥数培训班共有14人,分为两个小组,在一次阶段考试中两个小组成绩的茎叶图如图所示,其中甲组学生成绩的平均数是88,乙组学生成绩的中位数是,则mn的值是( )

第 1 页,共 16 页

A.10 B.11 C.12 D.13

【命题意图】本题考查样本平均数、中位数、茎叶图等基础知识,意在考查识图能力和计算能力. 8. 如图是某工厂对一批新产品长度(单位:mm)检测结果的频率分布直方图.估计这批产品的中位数为( )

A.20 B.25 C.22.5 D.22.75

9. 若直线y=kx﹣k交抛物线y2=4x于A,B两点,且线段AB中点到y轴的距离为3,则|AB|=( ) A.12

B.10

C.8

D.6

22

内任意取一点P(x,y),则x+y<1的概率是( )

10.在区域A.0

B. C. D.

11.根据《中华人民共和国道路交通安全法》规定:车辆驾驶员血液酒精浓度在20﹣80mg/100ml(不含80)之间,属于酒后驾车;血液酒精浓度在80mg/100ml(含80)以上,属于醉酒驾车.据《法制晚报》报道,2011年3月15日至3月28日,全国查处酒后驾车和醉酒驾车共28800人,如下图是对这28800人酒后驾车血液中酒精含量进行检测所得结果的频率分布直方图,则属于醉酒驾车的人数约为( )

A.2160 B.2880 C.4320 D.80

第 2 页,共 16 页

12.执行如图所示的程序,若输入的x3,则输出的所有x的值的和为( ) A.243 B.363 C.729 D.1092

【命题意图】本题考查程序框图的识别和运算,意在考查识图能力、简单的计算能力.

二、填空题

yxy22xy3x213.已知x,y满足xy4,则的取值范围为____________. 2xx114.球O的球面上有四点S,A,B,C,其中O,A,B,C四点共面,△ABC是边长为2的正三角形,平面SAB⊥平面ABC,则棱锥S﹣ABC的体积的最大值为 .

第 3 页,共 16 页

15.直线2x+3y+6=0与坐标轴所围成的三角形的面积为 . 16.已知Sn是数列{___________.

nn}|1|SnN的前项和,若不等式对一切恒成立,则的取值范围是nnn1n122【命题意图】本题考查数列求和与不等式恒成立问题,意在考查等价转化能力、逻辑推理能力、运算求解能力. 17.命题“若a>0,b>0,则ab>0”的逆否命题是 (填“真命题”或“假命题”.)

18.如图,在长方体ABCD﹣A1B1C1D1中,AB=AD=3cm,AA1=2cm,则四棱锥A﹣BB1D1D的体积为 cm3.

三、解答题

19.已知函数

且f(1)=2.

(1)求实数k的值及函数的定义域;

(2)判断函数在(1,+∞)上的单调性,并用定义加以证明.

20.设函数f(x)=1+(1+a)x﹣x2﹣x3,其中a>0. (Ⅰ)讨论f(x)在其定义域上的单调性;

(Ⅱ)当x∈时,求f(x)取得最大值和最小值时的x的值.

第 4 页,共 16 页

21.在极坐标系下,已知圆O:ρ=cosθ+sinθ和直线l:(1)求圆O和直线l的直角坐标方程;

(2)当θ∈(0,π)时,求直线l与圆O公共点的极坐标.

22.如图,三棱柱ABC﹣A1B1C1中,AB=AC=AA1=BC1=2,∠AA1C1=60°,平面ABC1⊥平面AA1C1C,AC1与A1C相交于点D.

(1)求证:BD⊥平面AA1C1C; (2)求二面角C1﹣AB﹣C的余弦值.

23.

第 5 页,共 16 页

(本小题满分10分)如图⊙O经过△ABC的点B,C与AB交于E,与AC交于F,且AE=AF. (1)求证EF∥BC;

(2)过E作⊙O的切线交AC于D,若∠B=60°,EB=EF=2,求ED的长.

24.如图所示,已知在四边形ABCD中,AD⊥CD,AD=5,AB=7,BD=8,∠BCD=135°. (1)求∠BDA的大小 (2)求BC的长.

第 6 页,共 16 页

苏尼特右旗民族中学2018-2019学年高二上学期数学期末模拟试卷含解析(参) 一、选择题

1. 【答案】B

【解析】本题考查了对数的计算、列举思想

a=-时,不符;a=0时,y=log2x过点(,-1),(1,0),此时b=0,b=1符合; a=时,y=log2(x+)过点(0,-1),(,0),此时b=0,b=1符合;

a=1时,y=log2(x+1)过点(-,-1),(0,0),(1,1),此时b=-1,b=1符合;共6个 2. 【答案】C

【解析】解:由抛物线方程得准线方程为:y=﹣1,焦点F(0,1), 又P为C上一点,|PF|=4, 可得yP=3,

代入抛物线方程得:|xP|=2∴S△POF=|0F|•|xP|=故选:C.

3. 【答案】D 【解析】解:∵2Sn=an+当n=2时,2(1+a2)=同理可得猜想验证:2Sn==

因此满足2Sn=an+∴∴Sn=∴S2015=故选:D.

, .

=

. .

…+

=

,∴

,化为

,解得a1=1.

=0,又a2>0,解得

第 7 页,共 16 页

【点评】本题考查了猜想分析归纳得出数列的通项公式的方法、递推式的应用,考查了由特殊到一般的思想方法,考查了推理能力与计算能力,属于难题.

4. 【答案】B

【解析】解:正方体的顶点都在球面上,则球为正方体的外接球,则2R=

2

,S=4πR=12π

=2R,

故选B

5. 【答案】B

【解析】解:设x1∈{x|f(x)=0}={x|f(f(x))=0}, ∴f(x1)=f(f(x1))=0, ∴f(0)=0, 即f(0)=m=0, 故m=0;

2

故f(x)=x+nx,

f(f(x))=(x2+nx)(x2+nx+n)=0, 当n=0时,成立;

2

当n≠0时,0,﹣n不是x+nx+n=0的根, 2

故△=n﹣4n<0,

故0<n<4;

综上所述,0≤n+m<4; 故选B.

【点评】本题考查了函数与集合的关系应用及分类讨论的思想应用,同时考查了方程的根的判断,属于中档题.

6. 【答案】D 【解析】

点:全称命题的否定. 7. 【答案】C

第 8 页,共 16 页

788884869290m9588,解得m3.乙组中8892,

7所以n9,所以mn12,故选C.

【解析】由题意,得甲组中8. 【答案】C

【解析】解:根据频率分布直方图,得; ∵0.02×5+0.04×5=0.3<0.5, 0.3+0.08×5=0.7>0.5; ∴中位数应在20~25内, 设中位数为x,则 0.3+(x﹣20)×0.08=0.5, 解得x=22.5;

∴这批产品的中位数是22.5. 故选:C.

【点评】本题考查了利用频率分布直方图求数据的中位数的应用问题,是基础题目.

9. 【答案】C

2

【解析】解:直线y=kx﹣k恒过(1,0),恰好是抛物线y=4x的焦点坐标, 设A(x1,y1) B(x2,y2)

2

抛物y=4x的线准线x=﹣1,线段AB中点到y轴的距离为3,x1+x2=6,

∴|AB|=|AF|+|BF|=x1+x2+2=8, 故选:C.

【点评】本题的考点是函数的最值及其几何意义,主要解决抛物线上的点到焦点的距离问题,利用抛物线的定义将到焦点的距离转化为到准线的距离.

10.【答案】C

【解析】解:根据题意,如图,设O(0,0)、A(1,0)、B(1,1)、C(0,1), 分析可得区域

表示的区域为以正方形OABC的内部及边界,其面积为1;

=

x2+y2<1表示圆心在原点,半径为1的圆,在正方形OABC的内部的面积为

22

由几何概型的计算公式,可得点P(x,y)满足x+y<1的概率是

=

故选C.

第 9 页,共 16 页

【点评】本题考查几何概型的计算,解题的关键是将不等式(组)转化为平面直角坐标系下的图形的面积,进而由其公式计算.

11.【答案】C

【解析】解:由题意及频率分布直方图的定义可知:属于醉酒驾车的频率为:(0.01+0.005)×10=0.15, 又总人数为28800,故属于醉酒驾车的人数约为:28800×0.15=4320. 故选C

12.【答案】D

【解析】当x3时,y是整数;当x3时,y是整数;依次类推可知当x3n(nN*)时,y是整数,则

2由x31000,得n7,所以输出的所有x的值为3,9,27,81,243,729,其和为1092,故选D.

n二、填空题

13.【答案】2,6 【解析】

第 10 页,共 16 页

考点:简单的线性规划.

【方法点睛】本题主要考查简单的线性规划.与二元一次不等式(组)表示的平面区域有关的非线性目标函数

22的最值问题的求解一般要结合给定代数式的几何意义来完成.常见代数式的几何意义:(1)xy表示点

x,y与原点0,0的距离;(2)xaybyb22表示点x,y与点a,b间的距离;(3)

y可表示点xx,y与0,0点连线的斜率;(4)xa表示点x,y与点a,b连线的斜率.

14.【答案】

【解析】解:由题意画出几何体的图形如图

由于面SAB⊥面ABC,所以点S在平面ABC上的射影H落在AB上,根据球体的对称性可知,当S在“最高点”,也就是说H为AB中点时,SH最大,棱锥S﹣ABC的体积最大. ∵△ABC是边长为2的正三角形,所以球的半径r=OC=在RT△SHO中,OH=

OC=

OS

CH=

∴∠HSO=30°,求得SH=OScos30°=1, ∴体积V=故答案是

Sh=.

×

×2×1=

2

第 11 页,共 16 页

【点评】本题考查锥体体积计算,根据几何体的结构特征确定出S位置是关键.考查空间想象能力、计算能力.

15.【答案】 3 .

【解析】解:把x=0代入2x+3y+6=0可得y=﹣2,把y=0代入2x+3y+6=0可得x=﹣3, ∴直线与坐标轴的交点为(0,﹣2)和(﹣3,0), 故三角形的面积S=×2×3=3, 故答案为:3.

【点评】本题考查直线的一般式方程和三角形的面积公式,属基础题.

16.【答案】31 【解析】由Sn121111S12…,n2n22n122221111111n2n2(n1)n1nn,两式相减,得Sn12n1nn2n,所以Sn4n1,

2222222222|4n1对一切nN恒成立,得|1|2,解得31. 于是由不等式|12(n1)n17.【答案】 真命题

【解析】解:若a>0,b>0,则ab>0成立,即原命题为真命题, 则命题的逆否命题也为真命题, 故答案为:真命题.

1132221

【点评】本题主要考查命题的真假判断,根据逆否命题的真假性相同是解决本题的关键.

18.【答案】 6

【解析】解:过A作AO⊥BD于O,AO是棱锥的高,所以AO=所以四棱锥A﹣BB1D1D的体积为V=故答案为:6.

=6.

=

三、解答题

19.【答案】

【解析】解:(1)f(1)=1+k=2;

第 12 页,共 16 页

∴k=1,

(2)为增函数;

,定义域为{x∈R|x≠0};

证明:设x1>x2>1,则:

==

∵x1>x2>1; ∴x1﹣x2>0,∴f(x1)>f(x2);

∴f(x)在(1,+∞)上为增函数.

20.【答案】

2

【解析】解:(Ⅰ)f(x)的定义域为(﹣∞,+∞),f′(x)=1+a﹣2x﹣3x,

,;

由f′(x)=0,得x1=∴由f′(x)<0得x<由f′(x)>0得故f(x)在(﹣∞,在(

(Ⅱ)∵a>0,∴x1<0,x2>0,∵x∈,当

,x2=,x><x<)和(

)上单调递增;

,x1<x2, ;

,+∞)单调递减,

时,即a≥4

①当a≥4时,x2≥1,由(Ⅰ)知,f(x)在上单调递增,∴f(x)在x=0和x=1处分别取得最小值和最大值.②当0<a<4时,x2<1,由(Ⅰ)知,f(x)在单调递增,在上单调递减, 因此f(x)在x=x2=

处取得最大值,又f(0)=1,f(1)=a,

∴当0<a<1时,f(x)在x=1处取得最小值; 当a=1时,f(x)在x=0和x=1处取得最小值; 当1<a<4时,f(x)在x=0处取得最小值.

第 13 页,共 16 页

21.【答案】

2

【解析】解:(1)圆O:ρ=cosθ+sinθ,即ρ=ρcosθ+ρsinθ, 2222

故圆O 的直角坐标方程为:x+y=x+y,即x+y﹣x﹣y=0.

直线l:

为:y﹣x=1,即x﹣y+1=0. (2)由(0,1),

故直线l 与圆O 公共点的一个极坐标为

,即ρsinθ﹣ρcosθ=1,则直线的直角坐标方程

,可得 ,直线l与圆O公共点的直角坐标为

【点评】本题主要考查把极坐标方程化为直角坐标方程的方法,直线和圆的位置关系,属于基础题.

22.【答案】

【解析】解:(1)∵四边形AA1C1C为平行四边形,∴AC=A1C1, ∵AC=AA1,∴AA1=A1C1,

∵∠AA1C1=60°,∴△AA1C1为等边三角形, 同理△ABC1是等边三角形, ∵D为AC1的中点,∴BD⊥AC1, ∵平面ABC1⊥平面AA1C1C,

平面ABC1∩平面AA1C1C=AC1,BD⊂平面ABC1, ∴BD⊥平面AA1C1C.

(2)以点D为坐标原点,DA、DC、DB分别为x轴、y轴、z轴,建立空间直角坐标系, 平面ABC1的一个法向量为由题意可得

,1,1),

,设平面ABC的法向量为

,则

, ,

所以平面ABC的一个法向量为=(∴cosθ=

即二面角C1﹣AB﹣C的余弦值等于

第 14 页,共 16 页

【点评】本题在三棱柱中求证线面垂直,并求二面角的平面角大小.着重考查了面面垂直的判定与性质、棱柱的性质、余弦定理、二面角的定义及求法等知识,属于中档题.

23.【答案】

【解析】解:(1)证明:∵AE=AF, ∴∠AEF=∠AFE.

又B,C,F,E四点共圆, ∴∠ABC=∠AFE,

∴∠AEF=∠ACB,又∠AEF=∠AFE,∴EF∥BC. (2)由(1)与∠B=60°知△ABC为正三角形, 又EB=EF=2, ∴AF=FC=2,

设DE=x,DF=y,则AD=2-y, 在△AED中,由余弦定理得 DE2=AE2+AD2-2AD·AEcos A.

1即x2=(2-y)2+22-2(2-y)·2×,

2∴x2-y2=4-2y,①

由切割线定理得DE2=DF·DC, 即x2=y(y+2), ∴x2-y2=2y,②

由①②联解得y=1,x=3,∴ED=3. 24.【答案】

【解析】(本题满分为12分)

解:(1)在△ABC中,AD=5,AB=7,BD=8,由余弦定理得=

∴∠BDA=60°…

第 15 页,共 16 页

(2)∵AD⊥CD, ∴∠BDC=30°…

在△ABC中,由正弦定理得

∴. …

,…

第 16 页,共 16 页

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- zrrp.cn 版权所有 赣ICP备2024042808号-1

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务